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1 Rotational Motion

1.1 Rotation Matrices
A rotation matrix is a real valued matrix whose determinant is 1, and whose columns are orthonor-
mal, ie. whose columns are orthogonal and have length 1. Note that these conditions can be
succinctly written as

det(R) = 1, RTR = I (1)

This second condition is that the left-inverse of R is its transpose, ie. RT = R−1. Note that
this also means that RR−1 = RRT = I , ie. that the rows of R are orthonormal as well. The
generalization of rotation matrices to complex matrices are called unitary matrices, ie. U ∈ Cn×n

that satisfy det(U) = 1 and U∗U = I . The columns of a rotation matrix often used to represent
an orthonormal coordinate system for Rn. An orthonormal coordinate transformation is a type of
isometry, a coordinate transformation that does not change metric of the space. One can see this
by considering the coordinate transform x = Rz. All metric properties (distances and angles) are
computed using inner products. Note that zT z = xTRTRx = xTx. As a result inner products in
the x or z coordinates are the same so no metric properties change by transforming between these
coordinate systems. This is consistent with our intuition about rotation matrices.

Relaxing the determinant restriction to det(R) = ±1 allows the set of matrices to include
rotations and reflections. This allows for left-handed as well as right-handed coordinate systems.
A matrix R such that RTR = I, detR = −1 represents a left-handed coordinate system instead
of a right-handed one. In order to transform from the standard basis coordinates to a left-handed
coordinate system at least one reflection is required. Volumes transformed by orthogonal matrices
such that detR = −1 are flipped inside out.
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1.2 Skew-Symmetric Matrices
A matrix K ∈ Rn×n is skew-symmetric if K = −KT . Skew-symmetric matrices have purely
imaginary eigenvalues. Best thought of in the context of the equation ẋ = Kx. Note that you
can prove explicitly that if K = −KT then xTKx = 0, ie. Kx is perpendicular to x. Vector field
rotational, ie. eKt is a rotation matrix. Eigenvalues come in complex conjugate pairs, so if you have
an odd dimensional matrix then there is always one such that λ = 0. It follows that eλt = e0t = 1
and the eigenvector associated with the 0 eigenvalue is the axis of rotation.
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1.3 Matrix Lie Groups
Matrices can be thought of both as vectors or as operators. Sets of matrices are sometimes en-
dowed with a local coordinate structure. These sets of matrices can be thought of as a manifold
allowing one to talk about surface or space like properties of this set of matrices along with curva-
ture and other geometric notions. Matrices as operators often represent transformations that encode
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symmetries, such as permutations, reflections, rotations, etc. In this context we can often talk about
sets of matrices as mathematical groups. Group theory is interested in composing operations or
transformations and seeing whether or not the composite operation has the same properties as the
original two. In some case in the contexts of matrices, a set of matrices is both a manifold and a
group. Perhaps the best example of these sets of matrices is the set of rotation matrices. Rotation
matrices have a continuous manifold structure but also a clear set of symmetries that are preserved
when two rotations are multiplied together. These matrix groups with a manifold structure are
called Lie groups. Some well known examples are

• GL(n): General linear group of dimension n, n × n matrices with det(A) = 1 for A ∈
GL(n).

⇒) Lie algebra: GL(n).

• SO(n): Special orthogonal group of matrices R ∈ Rn×n such that RTR = I and detR = 1.
This is the group of rotation matrices.

⇒) Lie algebra: skew symmetric matrices.

• U(n): Unitary group of matrices U ∈ Cn×n such that UTU = I .

⇒) Lie algebra: skew Hermitian matrices.

Rotation matrices are an excellent example of a Lie group. If R1, R2 ∈ SO(n) then clearly
R1R2 ∈ SO(n). In addition there exists a way to perturb a rotation matrix so that the new matrix
is still a rotation, ie. there is some locally “flat” (Euclidean) structure to the space of matrices.
This allows us to think of objects that lie in the tangent space to this manifold as infinitesimal
rotations. The tangent space to the Lie group at the identity defines the Lie algebra of the Lie
group. Integrating over an element in the Lie algebra builds up a particular element in the group.
The Lie algebra for SO(n) is the space of skew-symmetric matrices and the equation

R = eKt, for K = −KT

is an example of this integration. Geometrically, this concept can be visualizad as follows.
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1.4 Complex Eigenvalues and Eigenvectors
Along with representing stretching, complex eigenvalues can represent rotation of vectors as well.
If a real matrix has complex eigenvalues then they come in complex conjugate pairs. The eigen-
vectors come in conjugate pairs as well. We detail the exact mechanics of this below. Consider a
matrix A with the first two eigenvalues and left and right eigenvectors given as

λ1 = a+ bi, r1 =
1√
2

(
u+ vi

)
, ℓ1 =

1√
2

(
w + yi

)
(2)

λ2 = a− bi, r2 =
1√
2

(
u− vi

)
, ℓ2 =

1√
2

(
w − yi

)
(3)

with real vectors u, v, w, y. The diagonal form of the matrix is given by

A =

 | |
r1 r2 · · ·
| |



λ1 0 · · · 0

0 λ2
...

... . . . ...
0 · · · · · · 0


− ℓ∗1 −
− ℓ∗2 −

...

 (4)

=

 | |
1√
2

(
u+ vi

)
1√
2

(
u− vi

)
· · ·

| |



a+ bi 0 · · · 0

0 a− bi
...

... . . . ...
0 · · · · · · 0



− 1√

2

(
w − yi

)T −
− 1√

2

(
w + yi

)T −
...

 (5)

=

 | |
u v · · ·
| |




a b · · · 0

−b a
...

... . . . ...
0 · · · · · · 0


− wT −
− yT −

...

 (6)

This last equality is not obvious so we detail it below, but first note the form of the diagonal block,
with the real parts of the eigenvalues on the diagonal and the imaginary parts on the off diagonal.
Define the 2× 2 complex matrix

U = 1√
2

[
1 1
i −i

]
. (7)
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Note that U is a unitary matrix, ie. UU∗ = I . The first two dyads of the diagonalization are given
by

∑
i=1,2

λiriℓ
∗
i =

 | |
1√
2

(
u− vi

)
1√
2

(
u+ vi

)
| |

[
a+ bi 0
0 a− bi

][− 1√
2

(
w + yi

)T −
− 1√

2

(
w − yi

)T −

]
(8)

=

 | |
u v
| |

[
1 1
−i i

]
1√
2︸ ︷︷ ︸

U

1√
2

[
1 i
1 −i

]
︸ ︷︷ ︸

U∗

[
a −b
b a

] [
1 1
−i i

]
1√
2︸ ︷︷ ︸

U

1√
2

[
1 i
1 −i

]
︸ ︷︷ ︸

U∗

[
−wT−
−yT−

]
(9)

=

 | |
u v
| |

[
a −b
b a

] [
−wT−
−yT−

]
(10)

Note that both

[
−wT−
−yT−

] | |
u v
| |

 =

[
1 0
0 1

]
, and 1

2

[
−
(
w + yi

)T−
−
(
w − yi

)T−
] | |

u− vi u+ vi
| |

 =

[
1 0
0 1

]
(11)

1√
2

[
1 i
1 −i

] [
−wT−
−yT−

] | |
u v
| |

[
1 1
−i i

]
1√
2
=

[
1 0
0 1

]
(12)

We could write the eigenvalues as well in polar form λ1 = a+ bi = γeiθ and λ2 = a− bi = γe−iθ

where γ = |λ1| = |λ2| =
√
a2 + b2 ≥ 0. If we consider the diagonal block associated with the

complex eigenvectors we have that[
a+ bi 0
0 a− bi

]
=

[
1 i
1 −i

] [
a −b
b a

] [
1 1
−i i

]
(13)

γ

[
eiθ 0
0 e−iθ

]
=

[
1 i
1 −i

]
γ

[
cθ −sθ
sθ cθ

]
︸ ︷︷ ︸

R

[
1 1
−i i

]
(14)

remembering that eiθ = cθ + sθi. Note that R is rotation matrix. From this form, we can see
that complex eigenvalues of a real matrix correspond to rotations and stretching. The stretching
parameter is given by γ, the rotation is given by the matrix R and the corresponding angle θ, and
the plane of rotation is the subspace spanned by the vectors u and v. The relationship of the vectors
u and v (particularly the value of the inner product uTv) determines the shape of the rotation. If
u and v are orthogonal (uTv = 0), then the rotation is circular. If not, then the rotation has an
ellipsoidal shape.
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Note that right and left eigenvector pairs are not unique but can be scaled by either a real or
complex value. This is because the equation λv = Av does not specify the length of v. In diagonal
form, since diagonal matrices commute, we can write (shown in here in the 2 × 2 case, but easily
extended) | |

r1 r2
| |

[
λ1 0
0 λ2

] [
− ℓ∗1 −
− ℓ∗n −

]
=

 | |
r1 r2
| |

[
α1 0
0 α2

] [
λ1 0
0 λ2

] [
α−1
1 0
0 α−1

2

] [
− ℓ∗1 −
− ℓ∗2 −

]
(15)

=

 | |
α1r1 α2r2
| |

[
λ1 0
0 λ2

] [
− α−1

1 ℓ∗1 −
− α−1

2 ℓ∗2 −

]
(16)

Thus we can scale the right eigenvectors by αi and the left eigenvectors by α−1
i and the diagonal

form of the matrix stays the same. Note that in general αi can be either real or complex. One
interesting special case is the case of a real matrix with complex eigenvalues where α = eiϕ | |

1√
2

(
u− vi

)
1√
2

(
u+ vi

)
| |

[
eiϕ 0
0 e−iϕ

] [
γeiθ 0
0 γe−θi

] [
e−iϕ 0
0 eiϕ

][− 1√
2

(
w + yi

)T −
− 1√

2

(
w − yi

)T −

]
=

=

 | |
u v
| |

[
cϕ −sϕ
sϕ cϕ

]
γ

[
cθ −sθ
sθ cθ

] [
cϕ sϕ
−sϕ cϕ

] [
− wT −
− yT −

]
(17)

=

 | |
cϕu+ sϕv −sϕu+ cϕv

| |

 γ

[
cθ −sθ
sθ cθ

] [
− cϕwT + sϕyT −
− −sϕwT + cϕyT −

]
(18)

=

 | |
u′ v′

| |

 γ

[
cθ −sθ
sθ cθ

] [
− w′T −
− y′T −

]
(19)

with u′ = cϕu+ sϕv, v′ = −sϕu+ cϕv, w′ = cϕw + sϕy, y′ = −sϕw + cϕy.
Note that from this analysis, we can see that the vectors u and v (and also w and y) are not

unique but can be rotated by some phase ϕ. This can be derived either from the fact that diagonal
matrices commute or from the fact that 2-D rotation matrices commute. Indeed, computing the
quantity  | |

u′ v′

| |

 =

 | |
cϕu+ sϕv −sϕu+ cϕv

| |

 =

 | |
u v
| |

[
cϕ sϕ
−sϕ cϕ

]
(20)

is equivalent to changing the basis vectors that span the subspace containing u and v. It is not
obvious but a more complicated analysis (not shown) gives that u′ and v′ give the same ellipsoidal
shape of rotation as u and v.
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