Lecture : Linear Dependence, Span, Range, and Nullspace Winter 2021

Lecturer: Dan Calderone

Linear combinations and linear dependence

For the following define

$$
x \in \mathbb{R}^{n}, \quad y \in \mathbb{R}^{m}, \quad A=\left[\begin{array}{ccc}
\mid & & \mid \\
A_{1} & \cdots & A_{n} \\
\mid & & \mid
\end{array}\right]
$$

- A vector y is linear dependent on the columns of a matrix $A \in \mathbb{R}^{m \times n}$

$$
\text { if } \exists x \in \mathbb{R}^{n} \quad \text { s. t. } \quad y=A x \quad \text { or (equivalently) } y=\sum_{i} A_{i} x_{i}
$$

- A set of vectors (the columns of A) is linearly dependent if at least one vector is dependent on the others.

$$
A_{i}=\sum_{j \neq i} A_{j} x_{j}^{\prime}
$$

for some i and $\left\{x_{j}\right\}_{j \neq i}$. A useful characterization is the columns of A are linearly dependent

$$
\text { if } \exists x \in \mathbb{R}^{n}, x \neq 0 \quad \text { s. t. } \quad A x=0
$$

Indeed for some i

$$
A_{i} x_{i}=-\sum_{j \neq i} A_{j} x_{j}, \quad \Rightarrow \quad A_{i}=\sum_{j \neq i} A_{j} \frac{-x_{j}}{x_{i}}=\sum_{j \neq i} A_{j} x_{j}^{\prime}
$$

- A vector y is linearly independent on the columns of A, if it is not linearly dependent on them, i.e. there does not exist $x \in \mathbb{R}^{n}$ such that $y=A x$.
- A set of vectors (cols of A) is linear independent if none of the columns are linearly dependent on the others. A useful characterization is

$$
A x=0 \quad \Rightarrow \quad . x=0
$$

- All linear combinations of a set of vectors is the span of those vectors.

Rank

- Column rank: \# number of linearly independent columns.
- Row rank: \# number of linearly independent columns.
- Rank: Column rank=Row rank=Rank

The column-rank of a matrix is the dimension of the column space of $A, \mathcal{R}(A)$. The row-rank of a matrix is the dimension of the row space, $\mathcal{R}\left(A^{T}\right)$. The column rank and row rank are always equal and are simply called the rank of A, denoted $\operatorname{rk}(A)$.

Column rank = row rank

Proof: Let the column rank be denoted by k and the row rank be denoted by r.
If $A \in \mathbb{R}^{m \times n}$ has column rank k then there exists $C \in \mathbb{R}^{m \times k}$ with linearly independent columns such that

$$
A=C V
$$

where the columns of $V \in \mathbb{R}^{k \times n}$ are the coordinates of the columns of A with respect to the (basis) columns of C. Thinking of the rows of C as coefficients of linear combinations of the rows of V and realizing that V has k rows, we have that the dimension of $\mathcal{R}\left(A^{T}\right)$ is at most k. Thus we have that $r \leq k$.

If $A \in \mathbb{R}^{m \times n}$ has row rank r then there exists $R \in \mathbb{R}^{r \times n}$ with linearly independent rows such that

$$
A=W R
$$

where the rows of $W \in \mathbb{R}^{m \times r}$ are the coordinates of the rows of A with respect to the (basis) rows of R. Thinking of the columns or R as coefficients of linear combinations of the columns of W and realizing that W has r columns, we have that the dimension of $\mathcal{R}(A)$ is at most r. Thus we have that $k \leq r$.

Combining the two inequalities, $r \leq k$ and $k \leq r$ gives that $k=r$, ie. the column and row ranks are equal.

Range and Nullspace

Range Space

A matrix $A \in \mathbb{R}^{m \times n}$ represents a linear map from \mathbb{R}^{n} which is called the domain to \mathbb{R}^{m} which is called the co-domain. The span of the columns of A is a subspace of the co-domain called the range of A sometimes denoted $\mathcal{R}(A)$. Note this is equivalent to the definition.

$$
\begin{equation*}
\mathcal{R}(A)=\left\{y \in \mathbb{R}^{m} \mid y=A x, \text { for some } x \in \mathbb{R}^{n}\right\} \tag{1}
\end{equation*}
$$

Null Space

The nullspace of A, sometimes denoted $\mathcal{N}(A)$, is the subspace of the domain such that

$$
\begin{equation*}
\mathcal{N}(A)=\left\{x \in \mathbb{R}^{n} \mid A x=0\right\} \tag{2}
\end{equation*}
$$

- Orthogonal to the rows of A

$\mathcal{N}(A) \perp \mathcal{R}\left(A^{T}\right)$
$\mathcal{R}\left(A^{T}\right)$ is the span of the rows of A. Decompose $A \in \mathbb{R}^{m \times n}$ into rows as

$$
A=\left[\begin{array}{ccc}
- & \bar{a}_{1}^{T} & - \\
& \vdots & \\
- & \bar{a}_{1}^{T} & -
\end{array}\right]
$$

If $A x=0$, then

$$
A x=\left[\begin{array}{ccc}
- & \bar{a}_{1}^{T} & - \\
& \vdots & \\
- & \bar{a}_{m}^{T} & -
\end{array}\right] x=\left[\begin{array}{c}
\bar{a}_{1}^{T} x \\
\vdots \\
\bar{a}_{m}^{T} x
\end{array}\right]=\left[\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right]
$$

ie. if $x \in \mathcal{N}(A)$ then x is orthogonal to each row of $A . \mathcal{N}(A) \perp \mathcal{R}\left(A^{T}\right)$ and similarly $\mathcal{N}\left(A^{T}\right) \perp \mathcal{R}(A)$.

$$
\begin{gathered}
A \in \mathbb{R}^{2 \times 3} \\
A N=\left[\begin{array}{ccc}
- & \bar{A}_{1} & - \\
- & \bar{A}_{2} & -
\end{array}\right]\left[\begin{array}{c}
1 \\
N_{1} \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{gathered}
$$

$A \in \mathbb{R}^{1 \times 3}$
$A N=\left[\begin{array}{lll}- & \bar{A}_{1} & -\end{array}\right]\left[\begin{array}{cc}1 & \mid \\ N_{1} & N_{2} \\ 1 & 1\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$

Nullspace: Row perspective

- Basis Construction:

Suppose A has column rank k, ie. $\mathcal{R}(A)$ has dimension k. Assume (without loss of generality) that the first k columns of A are linearly independent (and thus span the range). (A similar construction can be done with any k linearly independent columns of A.) Let

$$
A=\left[\begin{array}{ccc}
\mid & & \mid \\
A_{1} & \cdots & A_{n} \\
\mid & & \mid
\end{array}\right], \quad \text { and } \quad B=\left[\begin{array}{ccc}
\mid & & \mid \\
A_{1} & \cdots & A_{k} \\
\mid & & \mid
\end{array}\right]
$$

where $B \in \mathbb{R}^{n \times k}$ is (the first) k linearly independent columns of $A . A$ can then be written as

$$
A=\left[\begin{array}{ll}
B & B D
\end{array}\right]
$$

where the columns of $D \in \mathbb{R}^{n \times(n-k)}$ are the coordinates of the remaining $n-k$ columns of A with respect to the columns of B.

$$
\left[\begin{array}{ccc}
\mid & & \mid \\
A_{k+1} & \cdots & A_{n} \\
\mid & & \mid
\end{array}\right]=B D=\underbrace{\left[\begin{array}{ccc}
\mid & & \mid \\
A_{1} & \cdots & A_{k} \\
\mid & & \mid
\end{array}\right]}_{B} \underbrace{\left[\begin{array}{ccc}
\mid & & \mid \\
D_{k+1} & \cdots & D_{n} \\
\mid & & \mid
\end{array}\right]}_{D}
$$

Let $N \in \mathbb{R}^{n \times(n-k)}$ be given by

$$
N=\left[\begin{array}{c}
-D \\
I
\end{array}\right]
$$

Note that

$$
A N=\left[\begin{array}{ll}
B & B D
\end{array}\right]\left[\begin{array}{c}
-D \\
I
\end{array}\right]=0
$$

We have also that the columns of N form a basis for the nullspace of A

$$
\begin{gathered}
A \in \mathbb{R}^{2 \times 4} \\
B_{3}=\left[\begin{array}{l}
B_{13} \\
B_{23}
\end{array}\right] \quad B_{4}=\left[\begin{array}{l}
B_{14} \\
B_{24}
\end{array}\right] \\
A_{3}=\left[\begin{array}{cc}
\mid & \mid \\
A_{1} & A_{2} \\
\mid & \mid
\end{array}\right]\left[\begin{array}{l}
B_{13} \\
B_{23}
\end{array}\right] \\
A_{4}=\left[\begin{array}{cc}
\mid & \mid \\
A_{1} & A_{2} \\
\mid & \mid
\end{array}\right]\left[\begin{array}{l}
B_{14} \\
B_{24}
\end{array}\right]
\end{gathered}
$$

Nullspace:

- Columns perspective
- basis construction

Proof:

- $\operatorname{Span} \mathcal{N}(A)$:

Suppose $A x=0$

$$
\begin{aligned}
& A x=\left[\begin{array}{ll}
B & B D
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=0 \\
& B x_{1}=-B D x_{2} \\
&\left(\left(B^{T} B\right)^{-1} B^{T}\right) B x_{1}=-\left(\left(B^{T} B\right)^{-1} B^{T}\right) B D x_{2} \\
& x_{1}=-D x_{2}
\end{aligned}
$$

Note that the linear independence of the columns of B guarantees that $B^{T} B$ is invertible. Plugging in then gives

$$
x=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
-D x_{2} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
-D \\
I
\end{array}\right] x_{2}=N x_{2}
$$

showing that x is a linear combination of the columns of N.

- Linear independence:

Suppose $N x_{2}=0$

$$
N x_{2}=\left[\begin{array}{c}
-D \\
I
\end{array}\right] x_{2}=\left[\begin{array}{c}
-D x_{2} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

It follows that $x_{2}=0$.

Rank-Nullity Theorem

The explicit construction of a basis for the nullspace given above shows that if a matrix has (column) rank k then the nullspace has dimension $n-k$. The dimension of the nullspace is known as the nullity and we have the rank-nullity theorem

$$
\begin{aligned}
\operatorname{dim}(\mathcal{R}(A))+\operatorname{dim}(\mathcal{N}(A)) & =n \\
\operatorname{rk}(A)+\operatorname{dim}(\mathcal{N}(A)) & =n
\end{aligned}
$$

1 Fundamental Theorem of Linear Algebra

$\mathcal{R}\left(A^{T}\right)$ and $\mathcal{N}(A)$ are orthogonal subspaces of the domain, meaning that any vector in one is orthogonal to any vector in the other. In addition, together $\mathcal{N}(A)$ and $\mathcal{R}\left(A^{T}\right)$ span all of the domain \mathbb{R}^{n}. Similarly, $\mathcal{R}(A)$ and $\mathcal{N}\left(A^{T}\right)$ are orthogonal subspaces of the co-domain and together they span the co-domain.

Fundamental Theorem of Linear Algebra Diagram

2×2 examples of rank 2 and 1.

2×3 examples of rank 2 and 1.
3×2 examples of rank 2 and 1.

3×3 examples of rank $\mathbf{3 , 2}$, and 1 .

