AE 510 - Linear System Theory - Winter 2020

Homework 1

Due Date: Thursday, Jan $16^{\text {th }}, 2020$ at 11:59 pm

1. Inner Products

(a) (PTS: 0-2) Prove $y^{T} x=|x||y| \cos \theta$ using the definition of the 2-norm and the law of cosines.
(b) (PTS: 0-2) Prove the parallelogram law:

$$
|x+y|^{2}+|x-y|^{2}=2|x|^{2}+2|y|^{2}
$$

2. Projections

(a) (PTS: 0-2) Compute the projection of $x=[1,2,3]^{T}$ onto $y=[1,1,-2]^{T}$.
(b) (PTS: 0-2) Compute the projection of $x=[1,2,3]^{T}$ onto the range of

$$
Y=\left[\begin{array}{cc}
1 & 1 \\
-1 & 0 \\
0 & 1
\end{array}\right]
$$

3. Block Matrix Computations

Multiply the following block matrices together. In each case give the required dimensions of the sub-blocks of B. If the dimensions are not determined by the shapes of A, then pick a dimension that works.
(a) (PTS: 0-2)

$$
A=\left[\begin{array}{ccc}
A_{11} & \cdots & A_{1 N} \tag{1}\\
\vdots & & \vdots \\
A_{M 1} & \cdots & A_{M N}
\end{array}\right], \quad B=\left[\begin{array}{ccc}
B_{11} & \cdots & B_{1 K} \\
\vdots & & \vdots \\
B_{N 1} & \cdots & B_{N K}
\end{array}\right], \quad A B=?
$$

where $A_{11} \in \mathbb{R}^{m_{1} \times n_{1}}, A_{1 N} \in \mathbb{R}^{m_{1} \times n_{N}}, A_{M 1} \in \mathbb{R}^{m_{M} \times n_{1}}$, and $A_{M N} \in \mathbb{R}^{m_{M} \times n_{N}}$.
(b) (PTS: 0-2)

$$
A=\left[\begin{array}{ccc}
- & A_{1} & - \tag{2}\\
\vdots & & \vdots \\
- & A_{m} & -
\end{array}\right], \quad B=\left[\begin{array}{ccc}
\mid & \cdots & \mid \\
B_{1} & & B_{k} \\
\mid & \cdots & \mid
\end{array}\right], \quad A B=?
$$

where $A_{1} \in \mathbb{R}^{1 \times n}$ and $A_{m} \in \mathbb{R}^{1 \times n}$.
(c) (PTS: 0-2)

$$
\left[\begin{array}{ccc}
\mid & \cdots & \mid \tag{3}\\
A_{1} & & A_{n} \\
\mid & \cdots & \mid
\end{array}\right], \quad B=\left[\begin{array}{ccc}
- & B_{1} & - \\
\vdots & & \vdots \\
- & B_{n} & -
\end{array}\right], \quad A B=?
$$

where $A_{1} \in \mathbb{R}^{m \times 1}$ and $A_{n} \in \mathbb{R}^{m \times 1}$.
(d) (PTS: 0-2)

$$
A=\left[\begin{array}{ccc}
- & A_{1} & - \tag{4}\\
\vdots & & \vdots \\
- & A_{m} & -
\end{array}\right], \quad D \in \mathbb{R}^{n \times n}, \quad B=\left[\begin{array}{ccc}
\mid & \cdots & \mid \\
B_{1} & & B_{k} \\
\mid & \cdots & \mid
\end{array}\right], \quad A D B=?
$$

where $A_{1} \in \mathbb{R}^{1 \times n}, A_{m} \in \mathbb{R}^{1 \times n}$.
(e) (PTS: 0-2)

$$
\left[\begin{array}{ccc}
\mid & \cdots & \mid \tag{5}\\
A_{1} & & A_{n} \\
\mid & \cdots & \mid
\end{array}\right], \quad D=\left[\begin{array}{ccc}
d_{11} & \cdots & d_{1 n} \\
\vdots & & \vdots \\
d_{n 1} & \cdots & d_{n n}
\end{array}\right], \quad B=\left[\begin{array}{ccc}
- & B_{1} & - \\
\vdots & & \vdots \\
- & B_{n} & -
\end{array}\right], \quad A D B=?
$$

where $A_{1} \in \mathbb{R}^{m \times 1}, A_{n} \in \mathbb{R}^{m \times 1}, d_{i j} \in \mathbb{R}$.
(f) (PTS: 0-2)

$$
A \in \mathbb{R}^{m \times n}, \quad\left[\begin{array}{lll}
B_{1} & \cdots & B_{k} \tag{6}
\end{array}\right], \quad A B=?
$$

(g) (PTS: 0-2)

$$
A=\left[\begin{array}{c}
-A_{1}- \tag{7}\\
\vdots \\
-A_{m}-
\end{array}\right], \quad B, \quad A B=?
$$

where $A_{1}, A_{m} \in \mathbb{R}^{1 \times n}$.

4. Norms

(PTS: 0-2) Compute the p-norm of the vector $x=\left[\begin{array}{llll}-1 & 2 & 3 & -2\end{array}\right]^{T}$ for $p=1,2,10,100, \infty$.

5. Vector Derivatives

Let $x=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right] \in \mathbb{R}^{2}$. Compute $\frac{\partial f}{\partial x}$ for the following functions:
(a) (PTS: 0-2)

$$
f(x)=x_{1}^{4}+3 x_{1} x_{2}^{2}+e^{x_{2}}+\frac{1}{x_{1} x_{2}}
$$

(b) (PTS: 0-2)

$$
f(x)=\left[\begin{array}{c}
\beta x_{1}+\alpha x_{2} \\
\beta\left(x_{1}+x_{2}\right) \\
\alpha^{2} x_{1}+\beta x_{2} \\
\beta x_{1}+\frac{1}{\alpha} x_{2}
\end{array}\right]
$$

for $\alpha, \beta \in \mathbb{R}$
(c) (PTS: 0-2)

$$
f(x)=\left[\begin{array}{c}
e^{x^{T}} Q x \\
\left(x^{T} Q x\right)^{-1}
\end{array}\right]
$$

for some $Q=Q^{T} \in \mathbb{R}^{2 \times 2}$.

6. Coordinates

Let y be the coordinates of a vector with respect to the standard basis in \mathbb{R}^{2}. In each case below consider a different basis for \mathbb{R}^{2} given by the columns of the matrix T. Compute the coordinates of the vector y with respect to the new basis 1) by graphically drawing the columns of T and y as vectors and 2) by inverting the matrix T, ie. by solving $y=T x$.
(a) (PTS: 0-2) Graphical. (PTS: 0-2) Inverting T.

$$
y=\left[\begin{array}{l}
4 \\
0
\end{array}\right], \quad T=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]
$$

(b) (PTS: 0-2) Graphical. (PTS: 0-2) Inverting T.

$$
y=\left[\begin{array}{l}
0 \\
2
\end{array}\right], \quad T=\left[\begin{array}{cc}
0 & -1 \\
-1 & -1
\end{array}\right]
$$

(c) (PTS: 0-2) Graphical. (PTS: 0-2) Inverting T.

$$
y=\left[\begin{array}{l}
2 \\
2
\end{array}\right], \quad T=\left[\begin{array}{cc}
0 & -1 \\
-1 & -1
\end{array}\right]
$$

(d) (PTS: 0-2) Graphical. (PTS: 0-2) Inverting T.

$$
y=\left[\begin{array}{c}
2 \\
-2
\end{array}\right], \quad T=\left[\begin{array}{ll}
1 & -1 \\
0 & -1
\end{array}\right]
$$

7. Elementary Matrices and Matrix Inverses

Consider the matrix

$$
A=\left[\begin{array}{cccc}
1 & 2 & -1 & 0 \\
0 & 2 & 1 & 0 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & -1
\end{array}\right]
$$

(a) (PTS: 0-2) Compute a sequence of elementary matrices that could be used to row-reduce A to the identity.
(b) (PTS: 0-2) Use this sequence of elementary matrices to compute A^{-1}.

8. Symmetric and Skew Symmetric Matrices

(a) (PTS: 0-2) Consider $\mathbf{a}, \mathbf{b} \in \mathbb{R}^{n}$ and $A \in \mathbb{R}^{n \times n}$. If A is a symmetric matrix, show that

$$
\mathbf{a}^{T} A \mathbf{b}=\mathbf{b}^{T} A \mathbf{a} .
$$

(b) (PTS: 0-2) Show that if $C \in \mathbb{R}^{n \times n}$ is skew-symmetric, i.e. $C^{T}=-C$, then $\mathbf{x}^{T} C \mathbf{x}=0$ for all $x \in \mathbb{R}^{n}$.
(c) (PTS: 0-2) Consider the quadratic expression $\mathbf{x}^{T} A \mathbf{x}$ where $\mathbf{x} \in \mathbb{R}^{n}$ and $A \in \mathbb{R}^{n \times n}$. Show that for all A, there exists a matrix $B \in \mathbb{R}^{n \times n}$ with $B^{T}=B$ such that

$$
\mathbf{x}^{T} B \mathbf{x}=\mathbf{x}^{T} A \mathbf{x} .
$$

(Hint: You can use the result from part b.)

