Homework 2

<u>Due Date</u>: Thursday, Jan 23^{rd} , 2020 at 11:59pm

1. Rotation Matrices

- (a) (PTS: 0-2) Consider $R \in \mathbb{R}^{n \times n}$. Show that if R is a rotation matrix, then its inverse is also a rotation matrix.
- (b) (PTS: 0-2) Consider $R_1, R_2 \in \mathbb{R}^{n \times n}$ and $R = R_1 R_2$. Prove that if R_1 and R_2 are rotation matrices, then R is also a rotation matrix.
- (c) (PTS: 0-2) Three parameters are sufficient to describe an arbitrary rotation matrix in 3D. Consider the rotation matrix $R \in \mathbb{R}^{3\times 3}$ defined in (1).

$$R = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}$$
(1)

Assuming that $r_{13}, r_{23} \neq 0$ and $\vartheta \in (0, \pi)$, obtain the parameters defined in Fig.1, φ, ϑ and ψ , in terms of the elements of R.

(Hint: You may find the function atan2 useful.)

Figure 1: Rotation obtained as composition of three elementary rotations: rotation by the angle φ about z-axis, rotation by the angle ϑ about y'-axis and rotation by the angle ψ about z''-axis, respectively.

2. Linear Transformations of Sets

Consider the unit-balls defined by the 1-norm, the 2-norm, and the $\infty - norm$

$$\mathcal{X}_1 = \left\{ x \mid |x|_1 \le 1 \right\}, \qquad \mathcal{X}_2 = \left\{ x \mid |x|_2 \le 1 \right\}, \qquad \mathcal{X}_\infty = \left\{ x \mid |x|_\infty \le 1 \right\}$$

Draw the set of points Ax for $x \in \mathcal{X}_1$, $x \in \mathcal{X}_2$, and $x \in \mathcal{X}_\infty$ for

(**PTS: 0-2**)
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
, (**PTS: 0-2**) $A = \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix}$, (**PTS: 0-2**) $A = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$

3. Matrix Representation Theorem

(PTS: 0-2) Consider a linear map $\mathcal{A} : \mathbb{R}^3 \to \mathbb{P}_2$ where \mathbb{P}_2 is the space of quadratic polynomials, ie. polynomials of the form $\alpha_0 + \alpha_1 s + \alpha_2 s^2$. Consider the standard basis $\{e_1, e_2, e_3\}$ for \mathbb{R}^3 and the basis $\{1, s, s^2\}$ for \mathbb{P}_2 . Suppose

$$\mathcal{A}(e_1) = 3 + 2s - s^2, \qquad \mathcal{A}(e_2) = -1 + s + s^2, \qquad \mathcal{A}(e_3) = 1 + s^2,$$

Find a matrix representation $A \in \mathbb{R}^{3\times 3}$ of the map \mathcal{A} , such that y = Ax where if $x \in \mathbb{R}^3$ are the coordinates of a vector in \mathbb{R}^3 with respect to the standard basis, then $y \in \mathbb{R}^3$ are the coordinates of $\mathcal{A}(v)$ with respect to the basis $\{1, s, s^2\}$ of P_2 .

4. Similarity Transformations

Consider the matrix

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

and the equation y = Ax for $x, y \in \mathbb{R}^2$. For each coordinate transformation $T \in \mathbb{R}^{2 \times 2}$ shown below, compute the matrix A' such that y' = A'x' when x = Tx' and y = Ty'.

(PTS: 0-2)
$$T = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$
, (PTS: 0-2) $T = \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix}$,

5. Nullspace

(a) **Basis Derivation**

Consider a fat matrix $A \in \mathbb{R}^{m \times n}$ (m < n) that is partitioned as $A = \begin{bmatrix} A_1 & A_2 \end{bmatrix}$ with $A_1 \in \mathbb{R}^{m \times m}$. Show that the columns of $B \in \mathbb{R}^{n \times n-m}$

$$B = \begin{bmatrix} -A_1^{-1}A_2\\I \end{bmatrix}$$

form a basis for the nullspace of A, $\mathcal{N}(A)$ by performing the following two steps.

- i. (PTS: 0-2) Show that any vector $v \in \mathcal{N}(A)$ can be written as v = Bw for some $w \in \mathbb{R}^{n-m}$, i.e. v is linear combination of the columns of B (the columns of B span the nullspace).
- ii. (PTS: 0-2) Show that the columns of B are linearly independent.

(b) **Computation**

For the following matrices explicitly compute a basis for their nullspaces BY HAND, ie. do not use computational software.

i. (PTS: 0-2)

$$A = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & -1 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 2 & 0 & 0 \end{bmatrix}$$

ii. (PTS: 0-2)

$$A = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 2 & 1 & 0 & 0 \end{bmatrix}$$

iii. (PTS: 0-2)

$$A = \begin{bmatrix} 2 & -1 & 1 & 2 \\ 1 & 1 & 3 & 4 \end{bmatrix}$$

6. Matrix Rank

The column rank of a matrix is the number of linearly independent columns. The row rank of a matrix is the number of linearly independent row.

- (a) (PTS: 0-2) Show that the row rank is less than or equal to the column rank.
- (b) (PTS: 0-2) Show that the col rank is less than or equal to the row rank.