AE 510 - Linear Systems Theory - Winter 2020

Homework 2

Due Date: Thursday, Jan $23^{\text {rd }}, 2020$ at 11:59pm

1. Rotation Matrices

(a) (PTS: 0-2) Consider $R \in \mathbb{R}^{n \times n}$. Show that if R is a rotation matrix, then its inverse is also a rotation matrix.
(b) (PTS: 0-2) Consider $R_{1}, R_{2} \in \mathbb{R}^{n \times n}$ and $R=R_{1} R_{2}$. Prove that if R_{1} and R_{2} are rotation matrices, then R is also a rotation matrix.
(c) (PTS: 0-2) Three parameters are sufficient to describe an arbitrary rotation matrix in 3D. Consider the rotation matrix $R \in \mathbb{R}^{3 \times 3}$ defined in (1).

$$
R=\left[\begin{array}{lll}
r_{11} & r_{12} & r_{13} \tag{1}\\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right]
$$

Assuming that $r_{13}, r_{23} \neq 0$ and $\vartheta \in(0, \pi)$, obtain the parameters defined in Fig. $1, \varphi, \vartheta$ and ψ, in terms of the elements of R.
(Hint: You may find the function atan2 useful.)

Figure 1: Rotation obtained as composition of three elementary rotations: rotation by the angle φ about z-axis, rotation by the angle ϑ about y^{\prime}-axis and rotation by the angle ψ about $z^{\prime \prime}$-axis, respectively.

2. Linear Transformations of Sets

Consider the unit-balls defined by the 1-norm, the 2 -norm, and the $\infty-$ norm

$$
\mathcal{X}_{1}=\left\{\left.x| | x\right|_{1} \leq 1\right\}, \quad \mathcal{X}_{2}=\left\{\left.x| | x\right|_{2} \leq 1\right\}, \quad \mathcal{X}_{\infty}=\left\{\left.x| | x\right|_{\infty} \leq 1\right\}
$$

Draw the set of points $A x$ for $x \in \mathcal{X}_{1}, x \in \mathcal{X}_{2}$, and $x \in \mathcal{X}_{\infty}$ for

$$
\text { (PTS: 0-2) } \quad A=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad \text { (PTS: 0-2) } \quad A=\left[\begin{array}{cc}
1 & 1 \\
0 & -1
\end{array}\right], \quad \text { (PTS: 0-2) } \quad A=\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]
$$

3. Matrix Representation Theorem

(PTS: 0-2) Consider a linear map $\mathcal{A}: R^{3} \rightarrow \mathbf{P}_{2}$ where \mathbf{P}_{2} is the space of quadratic polynomials, ie. polynomials of the form $\alpha_{0}+\alpha_{1} s+\alpha_{2} s^{2}$. Consider the standard basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ for \mathbb{R}^{3} and the basis $\left\{1, s, s^{2}\right\}$ for \mathbf{P}_{2}. Suppose

$$
\mathcal{A}\left(e_{1}\right)=3+2 s-s^{2}, \quad \mathcal{A}\left(e_{2}\right)=-1+s+s^{2}, \quad \mathcal{A}\left(e_{3}\right)=1+s^{2},
$$

Find a matrix representation $A \in R^{3 \times 3}$ of the map \mathcal{A}, such that $y=A x$ where if $x \in R^{3}$ are the coordinates of a vector in R^{3} with respect to the standard basis, then $y \in R^{3}$ are the coordinates of $\mathcal{A}(v)$ with respect to the basis $\left\{1, s, s^{2}\right\}$ of P_{2}.

4. Similarity Transformations

Consider the matrix

$$
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]
$$

and the equation $y=A x$ for $x, y \in R^{2}$. For each coordinate transformation $T \in R^{2 \times 2}$ shown below, compute the matrix A^{\prime} such that $y^{\prime}=A^{\prime} x^{\prime}$ when $x=T x^{\prime}$ and $y=T y^{\prime}$.

$$
\text { (PTS: 0-2) } \quad T=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right], \quad\left(\text { PTS: 0-2) } \quad T=\left[\begin{array}{ll}
1 & -1 \\
1 & -1
\end{array}\right],\right.
$$

5. Nullspace

(a) Basis Derivation

Consider a fat matrix $A \in R^{m \times n}(m<n)$ that is partitioned as $A=\left[\begin{array}{ll}A_{1} & A_{2}\end{array}\right]$ with $A_{1} \in R^{m \times m}$. Show that the columns of $B \in R^{n \times n-m}$

$$
B=\left[\begin{array}{c}
-A_{1}^{-1} A_{2} \\
I
\end{array}\right]
$$

form a basis for the nullspace of $A, \mathcal{N}(A)$ by performing the following two steps.
i. (PTS: 0-2) Show that any vector $v \in \mathcal{N}(A)$ can be written as $v=B w$ for some $w \in R^{n-m}$, ie. v is linear combination of the columns of B (the columns of B span the nullspace).
ii. (PTS: 0-2) Show that the columns of B are linearly independent.

(b) Computation

For the following matrices explicitly compute a basis for their nullspaces BY HAND, ie. do not use computational software.
i. (PTS: 0-2)

$$
A=\left[\begin{array}{cccccc}
1 & 0 & 0 & 1 & 0 & -1 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 2 & 0 & 0
\end{array}\right]
$$

ii. (PTS: 0-2)

$$
A=\left[\begin{array}{cccccc}
0 & 1 & 1 & 0 & 0 & -1 \\
1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 2 & 1 & 0 & 0
\end{array}\right]
$$

iii. (PTS: 0-2)

$$
A=\left[\begin{array}{cccc}
2 & -1 & 1 & 2 \\
1 & 1 & 3 & 4
\end{array}\right]
$$

6. Matrix Rank

The column rank of a matrix is the number of linearly independent columns. The row rank of a matrix is the number of linearly independent row.
(a) (PTS: 0-2) Show that the row rank is less than or equal to the column rank.
(b) (PTS: 0-2) Show that the col rank is less than or equal to the row rank.

