AE 510 - Linear Systems Theory - Winter 2020

Homework 3

Due Date: Thursday, Jan $30^{\text {th }}, 2020$ at 11:59pm

1. Traces and Determinants

(a) (PTS: 0-2) Consider $A, B \in \mathbb{R}^{n \times n}$. Show that $\operatorname{tr}(A B)=\operatorname{tr}(B A)$.
(b) (PTS: 0-2) Consider $A, B \in \mathbb{R}^{n \times n}$. Show that there do not exist matrices $A, B \in \mathbb{R}^{n \times n}$ such that $A B-B A=I$ where I is the identity matrix.
(c) (PTS: 0-2): The determinant of a diagonal matrix is the product of the diagonal elements. Draw (or describe) a picture illustrating this fact based on the determinant being the signed volume of the transformed unit cube.
Assume that $A \in R^{n \times n}$ is diagonalizable and let $\lambda_{1}, \ldots, \lambda_{n}$ be its eigenvalues. Use the properties of traces and determinants and the fact from part (a) to show that
(d) (PTS: 0-2): $\quad \operatorname{Tr}(A)=\sum_{i} \lambda_{i}$
(e) (PTS: 0-2): $\quad \operatorname{det}(A)=\prod_{i} \lambda_{i}$

2. Range and Nullspace

Let $\mathcal{R}(A)$ and $\mathcal{N}(A)$ represent the range and nullspace of A (and similarly let $\mathcal{R}\left(A^{T}\right)$ and $\mathcal{N}\left(A^{T}\right)$ be the range and nullspace of $\left.A^{T}\right)$.
(a) (PTS: 0-2) Suppose $y \in \mathcal{R}(A)$ and $x \in \mathcal{N}\left(A^{T}\right)$. Show that $x \perp y$, ie. $x^{T} y=0$.
(b) (PTS: 0-2) Consider $A \in R^{5 \times 10}$. Suppose A has only 3 linearly independent columns (the other 7 are linearly dependent on the first 3). What is the dimension of $\mathcal{R}(A)$? What is the dimension of $\mathcal{N}\left(A^{T}\right)$?
(c) (PTS: 0-2) What is the dimension of $\mathcal{N}(A)$? What is the dimension of $\mathcal{R}\left(A^{T}\right)$?

3. Least Squares and Minimum Norm Solutions

(a) (PTS: 0-2) Consider $A \in R^{m \times n}$ where $m>n$ (A is "tall") and A has full-column rank (the columns are linear independent). Show that the least squares solution $x=\left(A^{\top} A\right)^{-1} A^{\top} y$, minimizes $|y-A x|^{2}$, ie. makes $A x$ as close as possible to y.
(b) (PTS: 0-2) Consider $A \in R^{m \times n}$ where $m<n$ (A is "fat") and A has full-row rank (the rows are linear independent). Let $x=A^{\top}\left(A A^{\top}\right)^{-1} y$ and $z \in R^{n}$ be any vector such that $y=A z$. Show that $|x| \leq|z|$.

4. Similarity Transforms and Diagonalization

Suppose $p_{1}, p_{2} \in R^{2}$ are linearly independent right eigenvectors of $A \in R^{2 \times 2}$ with eigenvalues $\lambda_{1}, \lambda_{2} \in R$ such that $\lambda_{1} \neq \lambda_{2}$. Suppose that

$$
p_{1}^{T} p_{2}=0, \quad\left|p_{1}\right|=1, \quad\left|p_{2}\right|=2
$$

(a) (PTS: 0-2) Write an expression for a 2×2 matrix whose rows are the left-eigenvectors of A
(b) (PTS: 0-2) Write an expression for a similarity transform that transforms A into a diagonal matrix.

5. Spectral Mapping Theorem

Consider a diagonalizable matrix A with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ and a polynomial function f : $R^{n \times n} \rightarrow R^{n \times n}$.
(a) (PTS: 0-2) Show that the eigenvectors (left and right) of $f(A)$ are the same as the eigenvectors of A.
(b) (PTS: 0-2) Show that the eigenvalues of $f(A)$ are $f\left(\lambda_{1}\right), \ldots, f\left(\lambda_{n}\right)$.

6. Similar Eigenvalues

(a) (PTS: 0-2) Let $A \in \mathbb{R}^{n \times n}$ and let $T \in \mathbb{R}^{n \times n}$ be any non-singular matrix. Show that the eigenvalues of A are the same as those of $T^{-1} A T$.
(b) (PTS: 0-2) Let $A, B \in \mathbb{R}^{n \times n}$ be invertible matrices. Show that the eigenvalues of $A B$ are the same as those of $B A$.

