Homework 3

<u>Due Date</u>: Thursday, Jan 30^{th} , 2020 at 11:59pm

1. Traces and Determinants

- (a) **(PTS: 0-2)** Consider $A, B \in \mathbb{R}^{n \times n}$. Show that $\operatorname{tr}(AB) = \operatorname{tr}(BA)$.
- (b) **(PTS: 0-2)** Consider $A, B \in \mathbb{R}^{n \times n}$. Show that there do not exist matrices $A, B \in \mathbb{R}^{n \times n}$ such that AB BA = I where I is the identity matrix.
- (c) (PTS: 0-2): The determinant of a diagonal matrix is the product of the diagonal elements. Draw (or describe) a picture illustrating this fact based on the determinant being the signed volume of the transformed unit cube.

Assume that $A \in \mathbb{R}^{n \times n}$ is diagonalizable and let $\lambda_1, \ldots, \lambda_n$ be its eigenvalues. Use the properties of traces and determinants and the fact from part (a) to show that

- (d) **(PTS: 0-2)**: $Tr(A) = \sum_{i} \lambda_{i}$
- (e) **(PTS: 0-2)**: $det(A) = \prod_i \lambda_i$

2. Range and Nullspace

Let $\mathcal{R}(A)$ and $\mathcal{N}(A)$ represent the range and nullspace of A (and similarly let $\mathcal{R}(A^T)$ and $\mathcal{N}(A^T)$ be the range and nullspace of A^T).

- (a) (PTS: 0-2) Suppose $y \in \mathcal{R}(A)$ and $x \in \mathcal{N}(A^T)$. Show that $x \perp y$, i.e $x^T y = 0$.
- (b) (PTS: 0-2) Consider $A \in \mathbb{R}^{5 \times 10}$. Suppose A has only 3 linearly independent columns (the other 7 are linearly dependent on the first 3). What is the dimension of $\mathcal{R}(A)$? What is the dimension of $\mathcal{N}(A^T)$?
- (c) (PTS: 0-2) What is the dimension of $\mathcal{N}(A)$? What is the dimension of $\mathcal{R}(A^T)$?

3. Least Squares and Minimum Norm Solutions

- (a) **(PTS: 0-2)** Consider $A \in \mathbb{R}^{m \times n}$ where m > n (A is "tall") and A has full-column rank (the columns are linear independent). Show that the least squares solution $x = (A^{\mathsf{T}}A)^{-1}A^{\mathsf{T}}y$, minimizes $|y Ax|^2$, i.e. makes Ax as close as possible to y.
- (b) **(PTS: 0-2)** Consider $A \in \mathbb{R}^{m \times n}$ where m < n (A is "fat") and A has full-row rank (the rows are linear independent). Let $x = A^{\mathsf{T}}(AA^{\mathsf{T}})^{-1}y$ and $z \in \mathbb{R}^n$ be any vector such that y = Az. Show that $|x| \leq |z|$.

4. Similarity Transforms and Diagonalization

Suppose $p_1, p_2 \in \mathbb{R}^2$ are linearly independent right eigenvectors of $A \in \mathbb{R}^{2 \times 2}$ with eigenvalues $\lambda_1, \lambda_2 \in \mathbb{R}$ such that $\lambda_1 \neq \lambda_2$. Suppose that

$$p_1^T p_2 = 0, \qquad |p_1| = 1, \qquad |p_2| = 2$$

- (a) (PTS: 0-2) Write an expression for a 2×2 matrix whose rows are the left-eigenvectors of A
- (b) **(PTS: 0-2)** Write an expression for a similarity transform that transforms A into a diagonal matrix.

5. Spectral Mapping Theorem

Consider a diagonalizable matrix A with eigenvalues $\lambda_1, \ldots, \lambda_n$ and a polynomial function $f : \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}$.

- (a) (PTS: 0-2) Show that the eigenvectors (left and right) of f(A) are the same as the eigenvectors of A.
- (b) (PTS: 0-2) Show that the eigenvalues of f(A) are $f(\lambda_1), \ldots, f(\lambda_n)$.

6. Similar Eigenvalues

- (a) (PTS: 0-2) Let $A \in \mathbb{R}^{n \times n}$ and let $T \in \mathbb{R}^{n \times n}$ be any non-singular matrix. Show that the eigenvalues of A are the same as those of $T^{-1}AT$.
- (b) (PTS: 0-2) Let $A, B \in \mathbb{R}^{n \times n}$ be invertible matrices. Show that the eigenvalues of AB are the same as those of BA.