Homework 5

<u>Due Date</u>: Thursday, Feb 13^{th} , 2020 at 11:59pm

1. Continuous vs. Discrete Time Stability

(PTS: 0-2) Let $\rho(M)$ represent the set of eigenvalues or *spectrum* of M. Show that if $\operatorname{Re}(\lambda) < 0$ for all $\lambda \in \rho(A)$, then $|\mu|_2 < 1$ for all $\mu \in \rho(e^{A\Delta t})$.

2. Solutions to Linear Dynamical Systems

(a) **(PTS: 0-2)** If

$$x(t) = e^{At}x(0) + \int_0^t e^{A(t-\tau)}Bu(\tau) \ d\tau$$

Show that

$$\dot{x} = \frac{d}{dt}x(t) = Ax(t) + Bu(t)$$

(Hint: Leibniz integral rule will be helpful.)

(b) (PTS: 0-2) Consider the discrete time (time varying) update equation

$$x[t+1] = A[t]x[t] + B[t]u[t]$$

Write an expression for x[t] in terms of the initial state x[0], u[0], ..., u[t-1], A[0], ..., A[t-1], and B[0], ..., B[t-1].

3. Discretizing Continuous Time Systems

For the given continuous time evolution equation of the form

$$\dot{x} = Ax + Bu,$$

compute the matrices \bar{A} and \bar{B} for the corresponding discrete time update equation

$$x^+ = \bar{A}x + \bar{B}u$$

for a time step $\Delta t = 0.01$ seconds.

(a) **(PTS: 0-2)**

$$\dot{x} = Ax + Bu, \qquad A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 3 & -2 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

(b) (PTS: 0-2)

$$\dot{x} = Ax + Bu, \qquad A = \begin{bmatrix} 1 & 2\\ 1 & -1 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}$$

4. Controllability

Consider the dynamical system

$$\dot{x} = Ax + Bu$$
$$y = Cx$$

where $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times 1}$, $C \in \mathbb{R}^{1 \times n}$ and A is diagonalizable with right and left eigenvectors the columns and rows of P and Q respectively

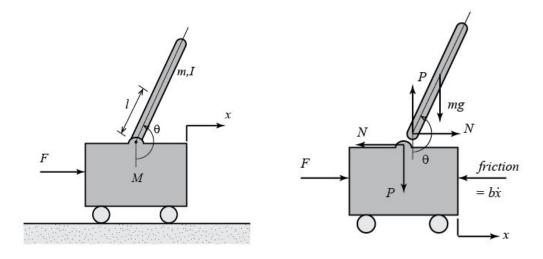
$$P = \begin{bmatrix} | & | \\ p_1 & \dots & p_n \\ | & | \end{bmatrix}, \qquad Q = P^{-1} = \begin{bmatrix} - & q_1^T & - \\ \vdots \\ - & q_n^T & - \end{bmatrix}$$
(1)

- (a) **(PTS: 0-2)** Suppose there exists a left eigenvector of A, $q_i^T \in R^{1 \times n}$ such that $q_i^T B = 0$. Show that the system is not controllable.
- (b) (PTS: 0-2) Now suppose $q_i^T B \neq 0$ for all *i*, but the first two eigenvalues are the same. Show that the system is not controllable.

5. Discrete Time Control of Inverted Pendulum

Consider the linearized model of an inverted pendulum shown below.

- (a) (PTS: 0-2) Compute the discrete time system for a time step size of $\Delta t = 0.01$ seconds.
- (b) (PTS: 0-2) Show that the discrete time system is controllable.
- (c) (**PTS: 0-2**) Compute the minimum norm open-loop control to drive the system to **0** from the initial condition shown below in 100 time steps (1 second).



System Parameters

- (a) $M = \text{mass of cart } 0.5 \ [kg]$
- (b) $m = \text{mass of the pendulum } 0.2 \ [kg]$
- (c) b = coefficient of friction for cart 0.1 [N/m/s]

- (d) l =length of pendulum center of mass 0.3 [m]
- (e) $I = \text{mass moment of inertia of the pendulum } 0.006 \ [kg \cdot m^2]$
- (f) F = force applied to the cart
- (g) x = cart position coordinate
- (h) θ = pendulum angle from vertical (down)
- (i) $\phi = \theta \pi$

Equations of Motion (for small θ):

$$l(I+ml^2)\ddot{\phi} - mgl\phi = ml\ddot{x}$$
$$(M+m)\ddot{x} + b\dot{x} - ml\ddot{\phi} = u$$

State-space:

$$\begin{bmatrix} \dot{x} \\ \ddot{x} \\ \dot{\phi} \\ \dot{\phi} \\ \ddot{\phi} \ddot{\phi} \\ \ddot{\phi} \dot$$