AE 510 - Linear Systems Theory - Winter 2020

Homework 6

Due Date: Friday, Feb $21^{\text {th }}$, 2020 at 11:59pm

1. Controllability/Observability: Coordinate Invariance

Consider a dynamical system

$$
\begin{aligned}
\dot{x} & =A x+B u, \quad x(0)=x_{0} \\
y & =C x+D u
\end{aligned}
$$

The system is controllable and observable. Show that under the coordinate transformation $x=T z$
(a) (PTS: 0-2). The system is still controllable in the z-coordinates.
(b) (PTS: 0-2). The system is still observable in the z-coordinates.
2. Observability Test

Consider the dynamical system

$$
\begin{aligned}
\dot{x} & =A x+B u \\
y & =C x+D u
\end{aligned}
$$

where $A \in R^{n \times n}, B \in R^{n \times 1}, C \in R^{1 \times n}, D \in R^{1 \times 1}$ and A is diagonalizable with right and left eigenvectors the columns and rows of P and Q respectively

$$
P=\left[\begin{array}{ccc}
\mid & & \mid \tag{1}\\
p_{1} & \ldots & p_{n} \\
\mid & & \mid
\end{array}\right], \quad Q=P^{-1}=\left[\begin{array}{ccc}
- & q_{1}^{T} & - \\
& \vdots & \\
- & q_{n}^{T} & -
\end{array}\right]
$$

(PTS: 0-2) Suppose there exists a right eigenvector of $A, p \in R^{n}$ such that $C p=0$. Show that the system is not observable.

3. Feedback Control: Eigenvalue Placement

Consider the two systems shown below of the form

$$
\begin{aligned}
\dot{x} & =A x+B u \\
y & =C x+D u
\end{aligned}
$$

with $A \in R^{n \times n}, B \in R^{n \times m}, C \in R^{o \times n}$, and $D \in R^{o \times m}$.
For each system, follow the steps given to design a feedback gain matrix K that stabilizes the closed-loop system matrix $A+B K$
(a) (PTS: 0-2) Compute the characteristic polynomial of A.

$$
\operatorname{det}(\lambda I-A)=\lambda^{n}+\alpha_{n-1} \lambda^{n-1}+\cdots+\alpha_{1} \lambda+\alpha_{0}
$$

Select (distinct) desired eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ for the closed loop system $A+B K$ so that the closed loop system will be stable. Compute the desired characteristic polynomial for $A+B K$ using the formula

$$
\operatorname{det}(\lambda I-(A+B K))=\Pi_{i}\left(\lambda-\lambda_{i}\right)=\lambda^{n}+\beta_{n-1} \lambda^{n-1}+\cdots+\beta_{1} \lambda+\beta_{0}
$$

(b) (PTS: 0-2) If the system is controllable, compute a coordinate transformation $x=T z$ such that the system in the z coordinates is in controllable canonical form

$$
\dot{z}=\bar{A} z+\bar{B} u
$$

where

$$
\bar{A}=\left[\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & & & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
-\alpha_{0} & -\alpha_{1} & -\alpha_{2} & \cdots & -\alpha_{n-1}
\end{array}\right], \quad \bar{B}=\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
1
\end{array}\right]
$$

Use the fact that if T exists, then the controllability matrix in the two different coordinates are related by

$$
\left[\begin{array}{llll}
\bar{A}^{n-1} \bar{B} & \cdots & \bar{A} \bar{B} & \bar{B}
\end{array}\right]=T^{-1}\left[\begin{array}{llll}
A^{n-1} B & \cdots & A B & B \tag{2}
\end{array}\right]
$$

(c) (PTS: 0-2) Compute the gain matrix \bar{K} such that $\bar{A}+\bar{B} \bar{K}$ has the desired characterisitic polynomial. $\lambda^{n}+\beta_{n-1} \lambda^{n-1}+\cdots+\beta_{1} \lambda+\beta_{0}$.
(d) (PTS: 0-2) Compute the feedback gain matrix K so that the closed loop system matrix $A+B K$ has the desired characteristic polynomial using \bar{K} and T.
(e) (PTS: 0-2) Check that the closed-loop system matrix $A+B K$ is stable.

- Inverted Pendulum

System Parameters
(a) $M=$ mass of cart $0.5[\mathrm{~kg}]$
(b) $m=$ mass of the pendulum $0.2[\mathrm{~kg}]$
(c) $b=$ coefficient of friction for cart $0.1[\mathrm{~N} / \mathrm{m} / \mathrm{s}]$
(d) $l=$ length of pendulum center of mass $0.3[\mathrm{~m}]$
(e) $I=$ mass moment of inertia of the pendulum $0.006\left[\mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$
(f) $F=$ force applied to the cart
(g) $x=$ cart position coordinate
(h) $\theta=$ pendulum angle from vertical (down)
(i) $\phi=\theta-\pi$

Equations of Motion (for small θ):

$$
\begin{gathered}
l\left(I+m l^{2}\right) \ddot{\phi}-m g l \phi=m l \ddot{x} \\
(M+m) \ddot{x}+b \dot{x}-m l \ddot{\phi}=u
\end{gathered}
$$

State-space:

$$
\begin{aligned}
{\left[\begin{array}{c}
\dot{x} \\
\ddot{x} \\
\dot{\phi} \\
\ddot{\phi}
\end{array}\right] } & =\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & \frac{-\left(I+m l^{2}\right) b}{I(M+m)+M m l^{2}} & 0 \\
0 & 0 & m^{2} g l^{2} \\
0 & \frac{-m l b}{I(M+m)+M m l^{2}} & 0 \\
I(M+m)+M m l^{2} & \frac{m g l(M+m)}{I(M+m)+M m l^{2}}
\end{array}\right]\left[\begin{array}{l}
x \\
\dot{x} \\
\phi \\
\dot{\phi}
\end{array}\right]+\left[\begin{array}{c}
0 \\
\frac{I+m l^{2}}{I(M+m)+M m l^{2}} \\
0 \\
\frac{m l}{T(M+m)+M m l^{2}}
\end{array}\right] u \\
\mathbf{y} & =\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
\dot{x} \\
\phi \\
\dot{\phi}
\end{array}\right]+\left[\begin{array}{l}
0 \\
0
\end{array}\right] u \\
{\left[\begin{array}{l}
\dot{x} \\
\ddot{x} \\
\dot{\phi} \\
\ddot{\phi}
\end{array}\right] } & =\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & -0.1818 & 2.6727 \\
0 & 0 & 0 \\
0 & -0.4545 & 31.1818 \\
0
\end{array}\right]\left[\begin{array}{l}
x \\
\dot{x} \\
\phi \\
\dot{\phi}
\end{array}\right]+\left[\begin{array}{c}
0 \\
1.8182 \\
0 \\
4.5455
\end{array}\right] u \\
y & =\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
\dot{x} \\
\phi \\
\dot{\phi}
\end{array}\right]+\left[\begin{array}{l}
0 \\
0
\end{array}\right] u \\
x[0] & =\left[\begin{array}{c}
-3 \\
2 \\
\frac{\pi}{8} \\
-\frac{\pi}{4}
\end{array}\right]
\end{aligned}
$$

- Aircraft Pitch

System Parameters

$$
\begin{array}{lc}
\alpha=\text { angle of attack } & q=\text { pitch rate } \\
\theta=\text { pitch angle } & \delta=\text { elevator deflection angle } \\
\mu=\frac{\rho S \bar{c}}{4 m} & \rho=\text { air density } \\
S=\text { area of wing } & \bar{c}=\text { mean chord length } \\
m=\text { aircraft mass } & \Omega=\frac{2 U}{\bar{c}} \\
U=\text { equilibrium flight of speed } & C_{T}=\text { Coefficient of Thrust } \\
C_{D}=\text { Coefficient of Drag } & C_{L}=\text { Coefficient of Lift } \\
C_{W}=\text { Coefficient of Weight } & C_{M}=\text { Coefficient of Pitch Moment } \\
\gamma=\text { Flight path angle } & \sigma=\frac{1}{1+\mu C_{L}}=\text { constant } \\
i_{y y}=\text { normalized moment of inertia } & \eta=\mu \sigma C_{M}=\text { constant }
\end{array}
$$

Equations of Motion:

$$
\begin{aligned}
\dot{\alpha} & =\mu \Omega \sigma\left[-\left(C_{L}+C_{D}\right) \alpha+\frac{1}{\left(\mu-C_{L}\right)} q-\left(C_{W} \sin \gamma\right) \theta+C_{L}\right] \\
\dot{q} & =\frac{\mu \Omega}{2 i_{y y}}\left[\left[C_{M}-\eta\left(C_{L}+C_{D}\right)\right] \alpha+\left[C_{M}+\sigma C_{M}\left(1-\mu C_{L}\right)\right] q+\left(\eta C_{W} \sin \gamma\right) \delta\right] \\
\dot{\theta} & =\Omega q
\end{aligned}
$$

State-space:

$$
\begin{aligned}
{\left[\begin{array}{c}
\dot{\alpha} \\
\dot{q} \\
\dot{\theta}
\end{array}\right] } & =\left[\begin{array}{ccc}
-0.313 & 56.7 & 0 \\
-0.0139 & -0.426 & 0 \\
0 & 56.7 & 0
\end{array}\right]\left[\begin{array}{l}
\alpha \\
q \\
\theta
\end{array}\right]+\left[\begin{array}{c}
0.232 \\
0.0203 \\
0
\end{array}\right][\delta] \\
y & =\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\alpha \\
q \\
\theta
\end{array}\right] \\
x[0] & =\left[\begin{array}{c}
\frac{\pi}{16} \\
-\frac{\pi}{8} \\
\frac{\pi}{12}
\end{array}\right]
\end{aligned}
$$

4. Observability and Least Squares

For the two systems in the previous problem, perform the following steps.
(a) (PTS: 0-2) Check whether or not the closed-loop system is observable.
(b) (PTS: 0-2) Simulate the trajectory forward using the feedback gain you computed in the previous problem from the initial condition given for 100 time steps with a time step size of $\Delta t=0.01$ seconds. At each time t, compute $y[t]$.
(c) (PTS: 0-2) If the system is observable, use the output trajectory $y[0], \ldots, y[100]$ and the method of least squares to compute the initial condition $x(0)$.

