AE 510 - Linear Systems Theory - Winter 2020

Homework 7

Due Date: Friday, Feb $28^{\text {th }}, 2020$ at 11:59pm

1. Laplace Transform

The Laplace transform of a function $f(t)$ is given by

$$
\mathcal{L}(f)(s)=\int_{0}^{\infty} f(t) e^{-s t} d t
$$

(a) Choose three of the following Laplace Transforms to compute:

- (PTS: 0-2) Delta function: $\mathcal{L}(\delta(t))=$?
- (PTS: 0-2) Differentiation: $\mathcal{L}(\dot{f}(t))=$?
- (PTS: 0-2) Integration: $\mathcal{L}\left(\int_{0}^{t} f(\tau) d \tau\right)=$?
- (PTS: 0-2) Frequency Shift: $\mathcal{L}\left(e^{a t} f(t)\right)=$?
- (PTS: 0-2) Convolution: $\mathcal{L}\left(\int_{0}^{t} g(t-\tau) f(\tau) d \tau\right)=$?
(b) (PTS: 0-2) Find the Laplace transform of $y(t)=f(t) * h(t)$ where $*$ is the convolution operator.

$$
\begin{gathered}
h(t)=e^{-t}, \quad t \geq 0 \\
f(t)= \begin{cases}0, & t<0 \\
1, & 0 \leq t \leq 2 \\
0, & 2<t\end{cases}
\end{gathered}
$$

(c) (PTS: 0-2) Obtain an approximation of $Y(s)$ from part (b) in the following form using the first-order Padé approximation.

$$
Y_{\text {approx }}(s)=\frac{b_{0} s^{m}+b_{1} s^{m-1}+\cdots+b_{m-1} s+b_{m}}{a_{0} s^{n}+a_{1} s^{n-1}+\cdots+a_{n-1} s+a_{n}}, \quad m \leq n
$$

Note: A Padé approximant is the "best" approximation of a function by a rational function of given order. The first-order Padé approximation of a time delay τ is

$$
e^{-s \tau} \approx \frac{1-\frac{\tau}{2} s}{1+\frac{\tau}{2} s}
$$

2. Transfer Functions

Consider the continuous time linear system

$$
\begin{aligned}
\dot{x} & =A x+B u, \quad x(0)=x_{0} \\
y & =C x+D u
\end{aligned}
$$

with $A \in R^{n \times n}, B \in R^{n \times m}, C \in R^{o \times n}$, and $D \in R^{o \times m}$.
(a) (PTS: 0-2) Compute the Laplace transform of the output $y(t)$, ie. $\mathcal{L}(y(t))=Y(s)$. Your solution should be in terms of the $A, B, C, D, x_{0}, U(s)$, where $U(s)$ is the Laplace transform of $u(t)$.
(b) (PTS: 0-2) Assuming A is diagonalizable, expand out your previous answer to show that

$$
Y(s)=\sum_{i}\left(\frac{1}{s-\lambda_{i}} C p_{i} q_{i}^{T} x_{0}\right)+\left[\sum_{i}\left(\frac{1}{s-\lambda_{i}} C p_{i} q_{i}^{T} B\right)+D\right] U(s)
$$

where p_{i} and q_{i} are the right and left eigenvectors for eigenvalue λ_{i}.

3. Observer Design: Eigenvalue Placement

Consider the two systems shown below of the form

$$
\begin{aligned}
\dot{x} & =A x+B u \\
y & =C x+D u
\end{aligned}
$$

with $A \in R^{n \times n}, B \in R^{n \times 1}, C \in R^{1 \times n}$, and $D \in R^{1 \times 1}$.
For each system, design an observer gain $L \in R^{n \times 1}$ such that the matrix $A+L C$ is stable. Note: you should follow the steps of Problem 3 from Homework 6. The points for this problem will be assigned similarly.

- Inverted Pendulum

System Parameters

(a) $M=$ mass of cart $0.5[\mathrm{~kg}]$
(b) $m=$ mass of the pendulum $0.2[\mathrm{~kg}]$
(c) $b=$ coefficient of friction for cart $0.1[\mathrm{~N} / \mathrm{m} / \mathrm{s}]$
(d) $l=$ length of pendulum center of mass $0.3[\mathrm{~m}]$
(e) $I=$ mass moment of inertia of the pendulum $0.006\left[\mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$
(f) $F=$ force applied to the cart
(g) $x=$ cart position coordinate
(h) $\theta=$ pendulum angle from vertical (down)
(i) $\phi=\theta-\pi$

Equations of Motion (for small θ):

$$
\begin{gathered}
l\left(I+m l^{2}\right) \ddot{\phi}-m g l \phi=m l \ddot{x} \\
(M+m) \ddot{x}+b \dot{x}-m l \ddot{\phi}=u
\end{gathered}
$$

State-space:

$$
\begin{aligned}
& {\left[\begin{array}{c}
\dot{x} \\
\ddot{x} \\
\dot{\phi} \\
\ddot{\phi}
\end{array}\right]=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & \frac{-\left(I+m l^{2}\right) b}{I(M+m)+M m l^{2}} & \frac{m^{2} g l^{2}}{I(M+m)+M m l^{2}} & 0 \\
0 & 0 & 0 & \\
0 & \frac{-m l b}{I(M+m)+M m l^{2}} & \frac{m g l(M+m)}{I(M+m)+M m l^{2}} &
\end{array}\right]\left[\begin{array}{c}
x \\
\dot{x} \\
\phi \\
\dot{\phi}
\end{array}\right]+\left[\begin{array}{c}
0 \\
\frac{I+m l^{2}}{I(M+m)+M m l^{2}} \\
0 \\
\frac{m l}{T(M+m)+M m l^{2}}
\end{array}\right] u} \\
& \mathbf{y}=\left[\begin{array}{llll}
1 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
\dot{x} \\
\phi \\
\dot{\phi}
\end{array}\right]+[0] u \\
& {\left[\begin{array}{c}
\dot{x} \\
\ddot{x} \\
\dot{\phi} \\
\ddot{\phi}
\end{array}\right]=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & -0.1818 & 2.6727 & 0 \\
0 & 0 & 0 & 1 \\
0 & -0.4545 & 31.1818 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
\dot{x} \\
\phi \\
\dot{\phi}
\end{array}\right]+\left[\begin{array}{c}
0 \\
1.8182 \\
0 \\
4.5455
\end{array}\right] u} \\
& y=\left[\begin{array}{llll}
1 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
\dot{x} \\
\phi \\
\dot{\phi}
\end{array}\right]+[0] u \\
& x[0]=\left[\begin{array}{c}
-3 \\
2 \\
\frac{\pi}{8} \\
-\frac{\pi}{4}
\end{array}\right]
\end{aligned}
$$

- Aircraft Pitch

System Parameters
$\alpha=$ angle of attack
$\theta=$ pitch angle
$\mu=\frac{\rho S \bar{c}}{4 m}$
$S=$ area of wing
$m=$ aircraft mass
$U=$ equilibrium flight of speed
$C_{D}=$ Coefficient of Drag
$C_{W}=$ Coefficient of Weight
$\gamma=$ Flight path angle
$i_{y y}=$ normalized moment of inertia
$q=$ pitch rate
$\delta=$ elevator deflection angle
$\rho=$ air density
$\bar{c}=$ mean chord length
$\Omega=\frac{2 U}{\bar{c}}$
$C_{T}=$ Coefficient of Thrust
$C_{L}=$ Coefficient of Lift
$C_{M}=$ Coefficient of Pitch Moment
$\sigma=\frac{1}{1+\mu C_{L}}=$ constant
$\eta=\mu \sigma C_{M}=$ constant

Equations of Motion:

$$
\begin{aligned}
& \dot{\alpha}=\mu \Omega \sigma\left[-\left(C_{L}+C_{D}\right) \alpha+\frac{1}{\left(\mu-C_{L}\right)} q-\left(C_{W} \sin \gamma\right) \theta+C_{L}\right] \\
& \dot{q}=\frac{\mu \Omega}{2 i_{y y}}\left[\left[C_{M}-\eta\left(C_{L}+C_{D}\right)\right] \alpha+\left[C_{M}+\sigma C_{M}\left(1-\mu C_{L}\right)\right] q+\left(\eta C_{W} \sin \gamma\right) \delta\right] \\
& \dot{\theta}=\Omega q
\end{aligned}
$$

State-space:

$$
\begin{aligned}
{\left[\begin{array}{c}
\dot{\alpha} \\
\dot{q} \\
\dot{\theta}
\end{array}\right] } & =\left[\begin{array}{ccc}
-0.313 & 56.7 & 0 \\
-0.0139 & -0.426 & 0 \\
0 & 56.7 & 0
\end{array}\right]\left[\begin{array}{l}
\alpha \\
q \\
\theta
\end{array}\right]+\left[\begin{array}{c}
0.232 \\
0.0203 \\
0
\end{array}\right][\delta] \\
y & =\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\alpha \\
q \\
\theta
\end{array}\right] \\
x[0] & =\left[\begin{array}{c}
\frac{\pi}{16} \\
-\frac{\pi}{8} \\
\frac{\pi}{12}
\end{array}\right]
\end{aligned}
$$

4. Observer Design: Separation principle

For the two systems above
(a) (PTS: 0-2) Write down the estimator dynamics for a state estimate $\hat{x} \in R^{n}$. Note that these should include the observer gain L times the output estimate error.
(b) (PTS: 0-2) Write down the joint dynamics of the true state $x \in R^{n}$ and the estimator state $\hat{x} \in R^{n}$.
(c) (PTS: 0-2) Write down the coordinate transformation $T \in R^{2 n \times 2 n}$ such that

$$
\left[\begin{array}{l}
x \\
e
\end{array}\right]=T\left[\begin{array}{l}
x \\
\hat{x}
\end{array}\right]
$$

where $e \in R^{n}$ is the error in the state estimate $e=\hat{x}-x$. Use this coordinate transformation to transform the dynamics from the previous part into dynamics for $\left[\begin{array}{l}x \\ e\end{array}\right]$.
(d) (PTS: 0-2) Show that the stability of the joint dynamics depends on the stability of $A+B K$ and $A+L C$ separately.
(e) Simulate the joint the state-error system using the observer gain L computed above and the control input $u=K \hat{x}+r$ where K is the feedback gain computed in Homework 6 and r is each of the two following reference signals. Use the initial conditions $x(0)$ given with the dynamics and the initial state estimate $\hat{x}(0)=0$.

- (PTS: 0-2) $r=1$
- (PTS: 0-2) $r=\gamma \sin (\omega t)$ (Pick a γ and ω you find interesting.)
(f) (PTS: 0-2)($\times 2$) Plot the state, error, and control trajectories for each case.

