AE510 - Linear System Theory - Winter 2021

Homework 1

Due Date: Sunday, Jan $17^{\text {th }}$, 2021 at 11:59 pm

1. Inner Products \& Norms

(a) (PTS: 0-2) Prove $y^{T} x=|x||y| \cos \theta$ using the definition of the 2-norm and the law of cosines.
(b) (PTS: 0-2) Compute the p-norm of the vector $x=\left[\begin{array}{llll}-1 & 2 & 3 & -2\end{array}\right]^{T}$ for $p=1,2,10,100, \infty$.

2. Projections

(a) (PTS: 0-2) Compute the projection of $x=[1,2,3]^{T}$ onto $y=[1,1,-2]^{T}$.
(b) (PTS: 0-2) Compute the projection of $x=[1,2,3]^{T}$ onto the range of

$$
Y=\left[\begin{array}{cc}
1 & 1 \\
-1 & 0 \\
0 & 1
\end{array}\right]
$$

3. Block Matrix Computations

Multiply the following block matrices together. In each case give the required dimensions of the sub-blocks of B. If the dimensions are not determined by the shapes of A, then pick a dimension that works.
(a) (PTS: 0-2)

$$
A=\left[\begin{array}{ccc}
A_{11} & \cdots & A_{1 N} \tag{1}\\
\vdots & & \vdots \\
A_{M 1} & \cdots & A_{M N}
\end{array}\right], \quad B=\left[\begin{array}{ccc}
B_{11} & \cdots & B_{1 K} \\
\vdots & & \vdots \\
B_{N 1} & \cdots & B_{N K}
\end{array}\right], \quad A B=?
$$

where $A_{11} \in \mathbb{R}^{m_{1} \times n_{1}}, A_{1 N} \in \mathbb{R}^{m_{1} \times n_{N}}, A_{M 1} \in \mathbb{R}^{m_{M} \times n_{1}}$, and $A_{M N} \in \mathbb{R}^{m_{M} \times n_{N}}$.
(b) (PTS: 0-2)

$$
A=\left[\begin{array}{ccc}
- & A_{1} & - \tag{2}\\
\vdots & & \vdots \\
- & A_{m} & -
\end{array}\right], \quad B=\left[\begin{array}{ccc}
\mid & \cdots & \mid \\
B_{1} & & B_{k} \\
\mid & \cdots & \mid
\end{array}\right], \quad A B=?
$$

where $A_{1} \in \mathbb{R}^{1 \times n}$ and $A_{m} \in \mathbb{R}^{1 \times n}$.
(c) (PTS: 0-2)

$$
\left[\begin{array}{ccc}
\mid & \cdots & \mid \tag{3}\\
A_{1} & & A_{n} \\
\mid & \cdots & \mid
\end{array}\right], \quad B=\left[\begin{array}{ccc}
- & B_{1} & - \\
\vdots & & \vdots \\
- & B_{n} & -
\end{array}\right], \quad A B=?
$$

where $A_{1} \in \mathbb{R}^{m \times 1}$ and $A_{n} \in \mathbb{R}^{m \times 1}$.
(d) (PTS: 0-2)

$$
A=\left[\begin{array}{ccc}
- & A_{1} & - \tag{4}\\
\vdots & & \vdots \\
- & A_{m} & -
\end{array}\right], \quad D \in \mathbb{R}^{n \times n}, \quad B=\left[\begin{array}{ccc}
\mid & \cdots & \mid \\
B_{1} & & B_{k} \\
\mid & \cdots & \mid
\end{array}\right], \quad A D B=?
$$

where $A_{1} \in \mathbb{R}^{1 \times n}, A_{m} \in \mathbb{R}^{1 \times n}$.
(e) (PTS: 0-2)

$$
\left[\begin{array}{ccc}
\mid & \cdots & \mid \tag{5}\\
A_{1} & & A_{n} \\
\mid & \cdots & \mid
\end{array}\right], \quad D=\left[\begin{array}{ccc}
d_{11} & \cdots & d_{1 n} \\
\vdots & & \vdots \\
d_{n 1} & \cdots & d_{n n}
\end{array}\right], \quad B=\left[\begin{array}{ccc}
- & B_{1} & - \\
\vdots & & \vdots \\
- & B_{n} & -
\end{array}\right], \quad A D B=?
$$

where $A_{1} \in \mathbb{R}^{m \times 1}, A_{n} \in \mathbb{R}^{m \times 1}, d_{i j} \in \mathbb{R}$.
(f) (PTS: 0-2)

$$
A \in \mathbb{R}^{m \times n}, \quad\left[\begin{array}{lll}
B_{1} & \cdots & B_{k} \tag{6}
\end{array}\right], \quad A B=?
$$

(g) (PTS: 0-2)

$$
A=\left[\begin{array}{c}
-A_{1}- \tag{7}\\
\vdots \\
-A_{m}-
\end{array}\right], \quad B, \quad A B=?
$$

where $A_{1}, A_{m} \in \mathbb{R}^{1 \times n}$.

4. Linear Transformations of Sets

(a) Affine Sets: Consider the affine sets for $x \in \mathbb{R}^{2}$.

$$
\mathcal{X}_{1}=\left\{x \mid x_{1}+x_{2}=1, x \in \mathbb{R}^{2}\right\}, \quad \mathcal{X}_{2}=\left\{x \mid x_{1}-x_{2}=1, x \in \mathbb{R}^{2}\right\},
$$

Draw the set of points $A x$ for $x \in \mathcal{X}_{1}$ and $x \in \mathcal{X}_{2}$ for
(PTS: 0-2) $\quad A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$,
(PTS: 0-2) $\quad A=\left[\begin{array}{cc}1 & 1 \\ 0 & -1\end{array}\right]$,
(PTS: 0-2) $\quad A=\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right]$
(b) Unit Balls: Consider the unit-balls defined by the 1-norm, the 2 -norm, and the ∞-norm.
$\mathcal{X}_{1}=\left\{\left.x| | x\right|_{1} \leq 1, x \in \mathbb{R}^{2}\right\}, \quad \mathcal{X}_{2}=\left\{\left.x| | x\right|_{2} \leq 1, x \in \mathbb{R}^{2}\right\}, \quad \mathcal{X}_{\infty}=\left\{\left.x| | x\right|_{\infty} \leq 1, x \in \mathbb{R}^{2}\right\}$
Draw the set of points $A x$ for $x \in \mathcal{X}_{1}, x \in \mathcal{X}_{2}$, and $x \in \mathcal{X}_{\infty}$ for
(PTS: 0-2) $\quad A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$,
(PTS: 0-2) $\quad A=\left[\begin{array}{cc}1 & 1 \\ 0 & -1\end{array}\right]$,
(PTS: 0-2) $\quad A=\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right]$
(c) Convex Hulls: Consider the simplicies in $\mathbb{R}^{2}, \mathbb{R}^{3}$, and \mathbb{R}^{4} respectively

$$
\begin{aligned}
& \Delta_{2}=\left\{x \mid \mathbf{1}^{T} x=1, x \geq 0, x \in \mathbb{R}^{2}\right\}, \\
& \Delta_{3}=\left\{x \mid \mathbf{1}^{T} x=1, x \geq 0, x \in \mathbb{R}^{3}\right\}, \\
& \Delta_{4}=\left\{x \mid \mathbf{1}^{T} x=1, x \geq 0, x \in \mathbb{R}^{4}\right\}
\end{aligned}
$$

where $\mathbf{1}$ is the vector of all ones of the appropriate dimension and \geq is an element-wise inequality.
Draw the set of points $A x$ for
(PTS: 0-2) $\quad A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right], x \in \Delta_{2}$
(PTS: 0-2) $\quad A=\left[\begin{array}{ccc}-1 & 1 & 1 \\ 0 & 1 & -1\end{array}\right], x \in \Delta_{3}$
(PTS: 0-2) $\quad A=\left[\begin{array}{cccc}1 & -1 & 0 & 0 \\ 1 & 1 & 0 & -1\end{array}\right], x \in \Delta_{4}$

5. Coordinates

Let y be the coordinates of a vector with respect to the standard basis in \mathbb{R}^{2}. In each case below consider a different basis for \mathbb{R}^{2} given by the columns of the matrix T. Compute the coordinates of the vector y with respect to the new basis 1) by graphically drawing the columns of T and y as vectors and 2) by inverting the matrix T, ie. by solving $y=T x$.
(a) (PTS: 0-2) Graphical. (PTS: 0-2) Inverting T.

$$
y=\left[\begin{array}{l}
4 \\
0
\end{array}\right], \quad T=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]
$$

(b) (PTS: 0-2) Graphical. (PTS: 0-2) Inverting T.

$$
y=\left[\begin{array}{l}
0 \\
2
\end{array}\right], \quad T=\left[\begin{array}{cc}
0 & -1 \\
-1 & -1
\end{array}\right]
$$

(c) (PTS: 0-2) Graphical. (PTS: 0-2) Inverting T.

$$
y=\left[\begin{array}{l}
2 \\
2
\end{array}\right], \quad T=\left[\begin{array}{cc}
0 & -1 \\
-1 & -1
\end{array}\right]
$$

(d) (PTS: 0-2) Graphical. (PTS: 0-2) Inverting T.

$$
y=\left[\begin{array}{c}
2 \\
-2
\end{array}\right], \quad T=\left[\begin{array}{ll}
1 & -1 \\
0 & -1
\end{array}\right]
$$

