Homework 2

<u>Due Date</u>: Sunday, Jan 24th, 2021 at 11:59 pm

1. Similarity Transformations

• Consider the matrix

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

and the equation y = Ax for $x, y \in \mathbb{R}^2$. For each coordinate transformation $T \in \mathbb{R}^{2 \times 2}$ shown below, compute the matrix A' such that y' = A'x' when x = Tx' and y = Ty'.

(PTS: 0-2)
$$T = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$
, (PTS: 0-2) $T = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$,

• Consider the matrix

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

and the equation y = Ax for $x, y \in \mathbb{R}^2$. For each coordinate transformation $T \in \mathbb{R}^{2 \times 2}$ shown below, compute the matrix A' such that y' = A'x' when x = Tx' and y = Ty'.

$$(\mathbf{PTS: 0-2}) \quad T = \begin{bmatrix} 1 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & -1 \end{bmatrix}, \qquad (\mathbf{PTS: 0-2}) \quad T = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \\ 1 & 0 & -1 \end{bmatrix}$$

2. Finding a Nullspace Basis

(a) **Basis Derivation**

Consider a fat matrix $A \in \mathbb{R}^{m \times n}$ (m < n) that is partitioned as $A = \begin{bmatrix} A_1 & A_2 \end{bmatrix}$ with $A_1 \in \mathbb{R}^{m \times m}$ invertible. Show that the columns of $B \in \mathbb{R}^{n \times n-m}$

$$B = \begin{bmatrix} -A_1^{-1}A_2\\I \end{bmatrix}$$

form a basis for the nullspace of A, $\mathcal{N}(A)$ by performing the following two steps.

- i. (PTS: 0-2) Show that any vector $v \in \mathcal{N}(A)$ can be written as v = Bw for some $w \in \mathbb{R}^{n-m}$, i.e. v is linear combination of the columns of B (the columns of B span the nullspace).
- ii. (PTS: 0-2) Show that the columns of B are linearly independent.

(b) Computation

For the following matrices explicitly compute a basis for their nullspaces BY HAND, ie. do not use computational software.

i. (PTS: 0-2)

$$A = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & -1 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 2 & 0 & 0 \end{bmatrix}$$

ii. (PTS: 0-2)

$$A = \begin{bmatrix} 0 & 1 & 0 & 1 & 0 & -1 \\ 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 2 & 0 & 0 \end{bmatrix}$$

iii. (PTS: 0-2)

$$A = \begin{bmatrix} 2 & -1 & 1 & 2 \\ 1 & 1 & 3 & 4 \end{bmatrix}$$

3. Matrix Rank

The column rank of a matrix is the number of linearly independent columns. The row rank of a matrix is the number of linearly independent row.

- (a) (PTS: 0-2) Show that the row rank is less than or equal to the column rank.
- (b) (PTS: 0-2) Show that the col rank is less than or equal to the row rank.

(Note: The fact that row rank = column rank is a deep and fundamental fact of matrices and linear combinations of vectors. The way to do this proof can be found in the lecture notes **span.pdf** (or on Wikipedia).)

4. Range and Nullspace

Let $\mathcal{R}(A)$ and $\mathcal{N}(A)$ represent the range and nullspace of A (and similarly let $\mathcal{R}(A^T)$ and $\mathcal{N}(A^T)$) be the range and nullspace of A^T).

- (a) (PTS: 0-2) Suppose $y \in \mathcal{R}(A)$ and $x \in \mathcal{N}(A^T)$. Show that $x \perp y$, i.e $x^T y = 0$.
- (b) (PTS: 0-2) Consider $A \in \mathbb{R}^{5 \times 10}$. Suppose A has only 3 linearly independent columns (the other 7 are linearly dependent on the first 3). What is the dimension of $\mathcal{R}(A)$? What is the dimension of $\mathcal{N}(A^T)$? What is the dimension of $\mathcal{N}(A)$? What is the dimension of $\mathcal{R}(A^T)$? (It's ok to just state the answers without proof.)

5. Least Squares and Minimum Norm Solutions

(a) (PTS: 0-2) Consider $A \in \mathbb{R}^{m \times n}$ where m > n (A is "tall") and A has full-column rank (the columns are linear independent). Show that the least squares solution $x = (A^{\intercal}A)^{-1}A^{\intercal}y$, minimizes $|y - Ax|^2$, i.e. makes Ax as close as possible to y.

(b) (PTS: 0-2) Consider $A \in \mathbb{R}^{m \times n}$ where m < n (A is "fat") and A has full-row rank (the rows are linear independent). Let $x = A^{\intercal}(AA^{\intercal})^{-1}y$ and $z \in \mathbb{R}^n$ be any vector such that y = Az. Show that $|x| \leq |z|$.

6. Grammian Rank

(PTS: 0-2) Show that $A^T A$ has the same rank as $A \in \mathbb{R}^{m \times n}$. Hint: use the rank-nullity theorem and show that both matrices have identical nullspaces.

7. Basis for Domain from Nullspace of A and Range of A^T

Consider $A \in \mathbb{R}^{m \times n}$ with m < n and full row rank and a matrix $N \in \mathbb{R}^{n \times n-m}$ with full column rank whose columns span the nullspace of A. Suppose we write a vector $x \in \mathbb{R}^n$ as a linear combination of the rows of A and the columns of N, ie.

$$x = \begin{bmatrix} A^T & N \end{bmatrix} \begin{bmatrix} x_1' \\ x_2' \end{bmatrix}$$

for $x'_1 \in \mathbb{R}^m$ and $x'_2 \in \mathbb{R}^{n-m}$

- (a) **(PTS: 0-2)** Symbollically compute $\begin{bmatrix} A^T & N \end{bmatrix}^{-1}$. Hint: Start by checking if $\begin{bmatrix} A^T & N \end{bmatrix}^{-1} = \begin{bmatrix} A^T & N \end{bmatrix}^T$...
- (b) **(PTS: 0-2)** Solve for x'_1 and x'_2 given A, N, and x.

8. Fundamental Theorem of Linear Algebra Pictures

For each of the following matrices draw a picture of the domain (either \mathbb{R}^2 or \mathbb{R}^3) labeling $\mathcal{R}(A^T)$ and $\mathcal{N}(A)$ and a picture of the co-domain (either \mathbb{R}^2 or \mathbb{R}^3) labeling the $\mathcal{R}(A)$ and $\mathcal{N}(A^T)$.

(PTS: 0-2)
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 (PTS: 0-2) $A = \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix}$
(PTS: 0-2) $A = \begin{bmatrix} -1 & 1 \\ 1 & 1 \\ 2 & 2 \end{bmatrix}$ (PTS: 0-2) $A = \begin{bmatrix} 1 & 1 & 1 \\ -1 & -1 & -1 \end{bmatrix}$