AE510 - Linear System Theory - Winter 2021

Homework 3

Due Date: Sunday, Jan $31^{\text {st }}, 2021$ at 11:59 pm

1. Elementary Matrices and Matrix Inverses

Consider the matrix

$$
A=\left[\begin{array}{cccc}
1 & 2 & -1 & 0 \\
0 & 2 & 1 & 0 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & -1
\end{array}\right]
$$

(a) (PTS: 0-2) Compute a sequence of elementary matrices that could be used to row-reduce A to the identity.
(b) (PTS: 0-2) Use this sequence of elementary matrices to compute A^{-1}.

2. Block Matrix Inversion

Consider the block matrix

$$
M=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]
$$

(a) (PTS: 0-2) Show that

$$
M=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]=\left[\begin{array}{cc}
I & 0 \\
C A^{-1} & I
\end{array}\right]\left[\begin{array}{cc}
A & 0 \\
0 & D-C A^{-1} B
\end{array}\right]\left[\begin{array}{cc}
I & A^{-1} B \\
0 & I
\end{array}\right]
$$

(b) (PTS: 0-2) Show that

$$
\left[\begin{array}{cc}
E & 0 \\
0 & F
\end{array}\right]^{-1}=\left[\begin{array}{cc}
E^{-1} & 0 \\
0 & F^{-1}
\end{array}\right]
$$

(c) (PTS: 0-2) Show that

$$
\left[\begin{array}{cc}
I & G \\
0 & I
\end{array}\right]^{-1}=\left[\begin{array}{cc}
I & -G \\
0 & I
\end{array}\right]
$$

(d) (PTS: 0-2) Show that

$$
M^{-1}=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]^{-1}=\left[\begin{array}{cc}
A^{-1}+A^{-1} B\left(D-C A^{-1} B\right)^{-1} C A^{-1} & -A^{-1} B\left(D-C A^{-1} B\right)^{-1} \\
-\left(D-C A^{-1} B\right)^{-1} C A^{-1} & \left(D-C A^{-1} B\right)^{-1}
\end{array}\right]
$$

Note: you can do this either by using the first three parts or by showing directly that $M^{-1} M=I$.

3. Woodbury Matrix Identity

Let $M=A+U C V$ where $M, A \in \mathbb{R}^{n \times n}$ and $C \in \mathbb{R}^{m \times m}$ and let $n>m$.
(a) (PTS: 0-2) What are the dimensions of U and V ? Which one is tall and which one is fat?
(b) (PTS: 0-2) Show the Woodbury Matrix Identity

$$
M^{-1}=(A+U C V)^{-1}=A^{-1}-A^{-1} U\left(C^{-1}+V A^{-1} U\right)^{-1} V A^{-1}
$$

4. Similar Eigenvalues

(a) (PTS: 0-2) Let $A \in \mathbb{R}^{n \times n}$ and let $T \in \mathbb{R}^{n \times n}$ be any non-singular matrix. Show that the eigenvalues of A are the same as those of $T^{-1} A T$. What are the eigenvectors of $T^{-1} A T$?
(b) (PTS: 0-2) Let $A, B \in \mathbb{R}^{n \times n}$ be invertible matrices. Show that the eigenvalues of $A B$ are the same as those of $B A$.

5. Spectral Mapping Theorem

Consider a diagonalizable matrix A with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ and a polynomial function f : $R^{n \times n} \rightarrow R^{n \times n}$.
(a) (PTS: 0-2) Show that the eigenvectors (left and right) of $f(A)$ are thex same as the eigenvectors of A.
(b) (PTS: 0-2) Show that the eigenvalues of $f(A)$ are $f\left(\lambda_{1}\right), \ldots, f\left(\lambda_{n}\right)$.

6. Cayley-Hamilton Theorem

(a) (PTS: 0-2) The eigenvalues of a matrix A are roots of its characteristic polynomial, $\chi_{A}(\lambda)=$ $\operatorname{det}(\lambda I-A)$, ie. $\operatorname{det}\left(\lambda_{i} I-A\right)=0$ if λ_{i} is an eigenvalue of A. Show that $\chi_{A}(A)=\mathbf{0}$ (where $\mathbf{0}$ is a matrix of zeros). Note that when you plug the matrix A into $\chi_{A}(\cdot)$ you replace each constant with that constant times the identity matrix, ie. $\chi(A)=A^{3}-2 A^{2}+A-I$. (Hint: use the spectral mapping theorem).
(b) (PTS: 0-2). Suppose that $\chi_{A}(s)=\operatorname{det}(s I-A)=s^{3}-2 s^{2}+s-1$. Use Cayley-Hamilton to write an expression for A^{6} in terms of A^{2}, A, I.
(c) (PTS: 0-2) . Consider an invertible matrix $A \in \mathbb{R}^{n \times n}$ with characteristic polynomial

$$
\chi_{A}(s)=\operatorname{det}(s I-A)=s^{n}-\alpha_{n-1} s^{n-1}+\cdots+\alpha_{1} s+\alpha_{0}
$$

Use the fact that $\chi_{A}(A)=\mathbf{0}$ to write a polynomial expression for A^{-1}. The polynomial should have degree $n-1$.

7. Traces and Determinants

The determinant and trace of a diagonal matrix can be computed as follows.

$$
D=\left[\begin{array}{ccc}
\lambda_{1} & \cdots & 0 \\
\vdots & & \vdots \\
0 & \cdots & \lambda_{n}
\end{array}\right], \quad \Rightarrow \quad \operatorname{det}(D)=\prod_{i} \lambda_{i}, \quad \operatorname{Tr}(D)=\sum_{i} \lambda_{i}
$$

The determinant operator has the following two properties.

$$
\operatorname{det}\left(A^{-1}\right)=\operatorname{det}(A)^{-1}, \quad \operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)
$$

The trace operator has the following property.

$$
\operatorname{Tr}(A B C)=\operatorname{Tr}(B C A)=\operatorname{Tr}(C A B)
$$

Assume that $A \in R^{n \times n}$ is diagonalizable and let $\lambda_{1}, \ldots, \lambda_{n}$ be its eigenvalues. Use the properties of traces and determinants to show that
(a) (PTS: 0-2): $\quad \operatorname{Tr}(A)=\sum_{i} \lambda_{i}$
(b) (PTS: 0-2): $\quad \operatorname{det}(A)=\prod_{i} \lambda_{i}$

