AE 510 - Linear System Theory - Winter 2021

Homework 4

Due Date: Sunday, Feb $7^{\text {th }}, 2021$ at 11:59 pm

1. Low Rank Matrix Structure

Consider the matrix

$$
A=\left[\begin{array}{lllll}
1 & 1 & 2 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 \\
1 & 0 & 1 & 1 & 1
\end{array}\right]
$$

- (PTS:0-2) Compute a sequence of elementary matrices $E=E_{k} \cdots E_{1}$ where $E_{i} \in \mathbb{R}^{5 \times 5}$ such that

$$
A=E^{-1} E A=E^{-1} \underbrace{\left[\begin{array}{cc}
I_{3 \times 3} & B \\
0 & \mathbf{0}
\end{array}\right]}_{E A}
$$

What are the dimensions of each block of $E A$?

- (PTS:0-2) Use the columns of E^{-1} to write a basis for $\mathcal{R}(A)$ and a basis for $\mathcal{N}\left(A^{T}\right)$. Construct a matrix M whose rows are the basis for $\mathcal{N}\left(A^{T}\right)$. Show that $M A=0$
- (PTS:0-2) Use the rows of $E A$ to write a basis for $\mathcal{R}\left(A^{T}\right)$ and a basis for $\mathcal{N}(A)$. Construct a matrix N whose columns are the basis for $\mathcal{N}(A)$. Show that $A N=0$

2. Complex Numbers and Roots of Unity

- (PTS: 0-2) Consider the complex number $z=(a+b i)$ with $a=b, a, b>0$, and $z^{*} z=4$. Write z in polar form, ie. $z=r e^{i \theta}$ and, in the complex plane, draw and label the points

$$
z, z^{*}, z^{-1},\left(z^{*}\right)^{-1}, 1, e^{i \theta}, e^{-i \theta}
$$

- (PTS: 0-2) Consider the vector $V_{k}^{4} \in \mathbb{C}^{4}$ for $k \in\{0,1,2,3\}$ and the shift matrix $S \in \mathbb{R}^{4 \times 4}$

$$
V_{k}^{4}=\left[\begin{array}{c}
1 \\
e^{i \frac{2 \pi}{4} k} \\
e^{i \frac{2 \pi}{4}} 2 k \\
e^{i \frac{2 \pi}{4}} 3 k
\end{array}\right], \quad S=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right]
$$

Show that $S V_{k}^{4}=e^{i \frac{2 \pi}{4} k} V_{k}^{4}$.

- (PTS: 0-2) List the complex solutions to the equation $z^{4}=1, z \in \mathbb{C}$ (the 4 -th roots of unity).
- (PTS: 0-2) For each 4-th root of unity given above, plot z^{t} for $t=0,1,2,3,4$ in the complex plane.
- (PTS: 0-2) Consider the complex signals $f_{k}(t)=e^{\frac{2 \pi i k t}{8}}$ for $k=0,1,2, \ldots, 7$. Plot $\operatorname{Re}\left(f_{k}(t)\right)$ for $t=0,1,2, \ldots, 7$ for $k=0,1,2, \ldots, 7$.

3. Computing Eigenvalues and Diagonalization

Compute eigenvalues and left and right eigenvectors for each of the following matrices. Write out a diagonalization for each matrix.
(a) (PTS: 0-2) Eigenvalues, Eigenvectors, Diagonal form

$$
A=\frac{1}{2}\left[\begin{array}{cc}
3 & -1 \\
-1 & 3
\end{array}\right]
$$

(b) (PTS: 0-2) Eigenvalues, Eigenvectors, Diagonal form

$$
A=\left[\begin{array}{cc}
1 & 2 \\
0 & -1
\end{array}\right]
$$

(c) (PTS: 0-2) Eigenvalues, Eigenvectors, Diagonal form

$$
A=\left[\begin{array}{ll}
-1 & -1 \\
-1 & -1
\end{array}\right]
$$

4. Orthogonal Eigenvectors

Suppose $p_{1}, p_{2} \in R^{2}$ are linearly independent right eigenvectors of $A \in R^{2 \times 2}$ with eigenvalues $\lambda_{1}, \lambda_{2} \in R$ such that $\lambda_{1} \neq \lambda_{2}$. Suppose that

$$
p_{1}^{T} p_{2}=0, \quad\left|p_{1}\right|=1, \quad\left|p_{2}\right|=2
$$

(a) (PTS: 0-2) Write an expression for a 2×2 matrix whose rows are the left-eigenvectors of A
(b) (PTS: 0-2) Write an expression for a similarity transform that transforms A into a diagonal matrix.

