AE510 - Linear System Theory - Winter 2021

Homework 5

Due Date: Monday, Feb $15^{\text {th }}$, 2021 at 11:59 pm

1. Eigenstructures

Compute the eigenvalues and eigenvectors, and diagonalize each of the following matrices.
(a) (PTS: 0-2)

$$
A=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right]
$$

(b) (PTS: 0-2)

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 2 & 1 \\
0 & 0 & 3
\end{array}\right]
$$

(c) (PTS: 0-2)
(Option 1:) In addition to diagonalizing, choose eigenvectors that are orthogonal and show they're orthogonal for matrix

$$
A=\left[\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right]
$$

(Option 2:) In addition to diagonalizing, show the eigenvectors are orthogonal for matrix

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 3
\end{array}\right]
$$

2. Complex Eigenvalues and Eigenvectors

Compute eigenvalues and right eigenvectors for each of the following matrices. Write out a diagonalization for each matrix. If the matrix has a pair of complex eigenvalues, then write it in both it's diagonal form

$$
A=\left[\begin{array}{ccc}
\mid & \mid & \mid \\
\frac{1}{\sqrt{2}}(u-v i) & \frac{1}{\sqrt{2}}(u+v i) & p \\
\mid & \mid & \mid
\end{array}\right]\left[\begin{array}{ccc}
a-b i & 0 & 0 \\
0 & a+b i & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right]\left[\begin{array}{ccc}
- & \frac{1}{\sqrt{2}}\left(w^{T}+y^{T} i\right) & - \\
- & \frac{1}{\sqrt{2}}\left(w^{T}-y^{T} i\right) & - \\
- & q^{T} & -
\end{array}\right]
$$

and the block diagonal form...

$$
A=\left[\begin{array}{ccc}
\mid & \mid & \mid \\
u & v & p \\
\mid & \mid & \mid
\end{array}\right]\left[\begin{array}{ccc}
a & -b & 0 \\
b & a & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right]\left[\begin{array}{lll}
- & w^{T} & - \\
- & y^{T} & - \\
- & q^{T} & -
\end{array}\right]
$$

for vectors $u, v, p, w, y, q \in \mathbb{R}^{3}$.
(a) (PTS: 0-2) Eigenvalues, Eigenvectors, Diagonal form. (PTS: 0-2) Block diagonal form.

$$
A=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & -1 \\
0 & 1 & -1
\end{array}\right]
$$

(b) (PTS: 0-2) Eigenvalues, Eigenvectors, Diagonal form. (PTS: 0-2) Block diagonal form.

$$
A=\left[\begin{array}{ccc}
2 & -1 & 0 \\
1 & 2 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

(c) (PTS: 0-2) Eigenvalues, Eigenvectors, Diagonal form. (PTS: 0-2) Block diagonal form.

$$
A=\left[\begin{array}{ccc}
0 & -1 & 1 \\
1 & 0 & -1 \\
-1 & 1 & 0
\end{array}\right]
$$

3. Rotation Matrices and Complex Eigenvectors

Consider the two rotation matrices

$$
R_{1}=\left[\begin{array}{cc}
\cos \theta_{1} & -\sin \theta_{1} \\
\sin \theta_{1} & \cos \theta_{1}
\end{array}\right], \quad R_{2}=\left[\begin{array}{cc}
\cos \theta_{2} & -\sin \theta_{2} \\
\sin \theta_{2} & \cos \theta_{2}
\end{array}\right]
$$

(a) (PTS: 0-2) Show that R_{1} and R_{2} commute, ie. $R_{1} R_{2}=R_{2} R_{1}$ (Note that most matrices do not commute. 2×2 rotation matrices are an exception.)
(b) (PTS: 0-2) Compute the inverse of R_{1}.
(c) (PTS: 0-2) Give a physical interpretation of $R_{1} R_{2}$ and R_{1}^{-1} related to the angles θ_{1} and θ_{2}.
(d) (PTS: 0-2) Consider a 2×2 real matrix A that can be diagonalized as

$$
A=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
\mid & \mid \\
(u-v i) & (u+v i) \\
\mid & \mid
\end{array}\right]\left[\begin{array}{cc}
r e^{i \theta} & 0 \\
0 & r e^{-i \theta}
\end{array}\right]\left(\left[\begin{array}{cc}
\mid & \mid \\
(u-v i) & (u+v i) \\
\mid & \mid
\end{array}\right] \frac{1}{\sqrt{2}}\right)^{-1}
$$

where $r \in \mathbb{R}_{+}$and $u, v \in \mathbb{R}^{2}$. Show that another valid diagonalization for A is

$$
A=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
\mid & \mid \\
\left(u^{\prime}-v^{\prime} i\right) & \left(u^{\prime}+v^{\prime} i\right) \\
\mid & \mid
\end{array}\right]\left[\begin{array}{cc}
r e^{i \theta} & 0 \\
0 & r e^{-i \theta}
\end{array}\right]\left(\left[\begin{array}{cc}
\mid & \mid \\
\left(u^{\prime}-v^{\prime} i\right) & \left(u^{\prime}+v^{\prime} i\right) \\
\mid & \mid
\end{array}\right] \frac{1}{\sqrt{2}}\right)^{-1}
$$

where $u^{\prime}=\cos (\phi) u+\sin (\phi) v$ and $v^{\prime}=-\sin (\phi) u+\cos (\phi) v$ for any angle ϕ.

4. Nilpotent Matrices

(PTS:0-2) Consider the matrix

$$
N=\left[\begin{array}{lllllll}
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

What is N^{2} ? What is N^{3} ? What is N^{4} ? What is the characteristic polynomial of N ? What are the eigenvalues of N ?

5. Continuous vs. Discrete Time Stability

(PTS: 0-2) Let $\rho(M)$ represent the set of eigenvalues or spectrum of M. Show that if $\operatorname{Re}(\lambda)<0$ for all $\lambda \in \rho(A)$, then $|\mu|<1$ for all $\mu \in \rho\left(e^{A \Delta t}\right)$.

6. Circulant Matrices

Consider the shift matrix

$$
P=\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

and the circulant matrix (for the vector $\left[\begin{array}{llllll}c_{0} & c_{1} & c_{2} & c_{3} & c_{4} & c_{4} c_{5}\end{array}\right]$).

$$
C=\left[\begin{array}{llllll}
c_{0} & c_{5} & c_{4} & c_{3} & c_{2} & c_{1} \\
c_{1} & c_{0} & c_{5} & c_{4} & c_{3} & c_{2} \\
c_{2} & c_{1} & c_{0} & c_{5} & c_{4} & c_{3} \\
c_{3} & c_{2} & c_{1} & c_{0} & c_{5} & c_{4} \\
c_{4} & c_{3} & c_{2} & c_{1} & c_{0} & c_{5} \\
c_{5} & c_{4} & c_{3} & c_{2} & c_{1} & c_{0}
\end{array}\right]
$$

Note that each column of C is the vector c shifted by one element.
(a) (PTS: 0-2) Check that the columns of V are right eigenvectors of P . (You can just check

2 of them.)

$$
V=\left[\begin{array}{ccc}
\mid & \cdots & \mid \\
V_{1} & \cdots & V_{6} \\
\mid & \cdots & \mid
\end{array}\right]=\frac{1}{\sqrt{6}}\left[\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & e^{\frac{i 2 \pi(1 \times 1)}{6}} & e^{\frac{i 2 \pi(1 \times 2)}{6}} & e^{\frac{i 2 \pi(1 \times 3)}{6}} & e^{\frac{i 2 \pi(1 \times 4)}{6}} & e^{\frac{i 2 \pi(1 \times 5)}{6}} \\
1 & e^{\frac{i 2 \pi(2 \times 1)}{6}} & e^{\frac{i 2 \pi(2 \times 2)}{6}} & e^{\frac{i 2 \pi(2 \times 3)}{6}} & e^{\frac{i 2 \pi(2 \times 4)}{6}} & e^{\frac{i 2 \pi(2 \times 5)}{6}} \\
1 & e^{\frac{i 2 \pi(3 \times 1)}{6}} & e^{\frac{i 2 \pi(3 \times 2)}{6}} & e^{\frac{i 2 \pi(3 \times 3)}{6}} & e^{\frac{i 2 \pi(3 \times 4)}{6}} & e^{\frac{i 2 \pi(3 \times 5)}{6}} \\
1 & e^{\frac{i 2 \pi(4 \times 1)}{6}} & e^{\frac{i 2 \pi(4 \times 2)}{6}} & e^{\frac{i 2 \pi(4 \times 3)}{6}} & e^{\frac{i 2 \pi(4 \times 4)}{6}} & e^{\frac{i 2 \pi(4 \times 5)}{6}} \\
1 & e^{\frac{i 2 \pi(5 \times 1)}{6}} & e^{\frac{i 2 \pi(5 \times 2)}{6}} & e^{\frac{i 2 \pi(5 \times 3)}{6}} & e^{\frac{i 2 \pi(5 \times 4)}{6}} & e^{\frac{i 2 \pi(5 \times 5)}{6}}
\end{array}\right]
$$

(b) (PTS: 0-2) What are the eigenvalues associated with each eigenvector? Which eigenvectors are conjugate pairs of each other?
(c) (PTS: 0-2) Show that the circulant matrix C can be written as

$$
C=c_{0} I+c_{1} P+c_{2} P^{2}+c_{3} P^{3}+c_{4} P^{4}+c_{5} P^{5}
$$

(d) (PTS: 0-2) Show that the columns of V are orthogonal to each other, ie. $V_{i}^{*} V_{j}=0$ for $i \neq j$ where V_{i} and V_{j} are columns of V. What does this say about V^{-1} ?
(e) (PTS: 0-2) Use the spectral mapping theorem to compute the eigenvalues of C.
(f) (PTS: 0-2) Write out a diagonalization of C.

