## AE 510 - Linear System Theory - Winter 2021

## Homework 7

Due Date: Monday, Mar $1^{\text {st }}$, 2021 at 11:59 pm

## 1. Integral Solution

(PTS:0-4) Show that the solution

$$
x(t)=e^{A t} x^{0}+\int_{0}^{t} e^{A(t-\tau)} B u(\tau) d \tau
$$

satisfies the differential equation and initial condition

$$
\dot{x}=A x+B u, \quad x(0)=x^{0}
$$

## 2. Minimum Norm Control

Consider the discrete update equation

$$
x^{+}=A x+B u, \quad x[0]=x^{0}
$$

for $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}$

- (PTS: 0-2) Write the equation for the value of $x$ at the $k$-th timestep, $x[k]$, in terms of the initial condition $x^{0}$ and the control inputs up to time $k-1, u[0], \ldots, u[k-1]$.
- (PTS: 0-2) (If your first answer wasn't in this form already), write your previous answer in the form

$$
x[k]=F x^{0}+G U
$$

where $U \in \mathbb{R}^{k m}$ is the stacked control vector

$$
U=\left[\begin{array}{c}
u[0] \\
\vdots \\
u[k-1]
\end{array}\right]
$$

What are the matrices $F$ and $G$ in terms of $A$ and $B$ ?

- (PTS: 0-2) Consider the problem of driving the system to a particular point $x^{\prime}$ at time $k$, ie. computing $U$ such that

$$
x^{\prime}=x[k]=F x^{0}+G U
$$

Find the minimum norm $U$ such that $x[k]=x^{\prime}$. Hint: write the above equation in the form $y=G U$ and use the minimum norm solution $U=G^{T}\left(G G^{T}\right)^{-1} y$. What rank condition on $G$ is required for you to be able to compute this $U$ ?

## 3. Controllability Matrix Range

(PTS:0-4) A result of the Cayley Hamilton theorem $\left(\chi_{A}(A)=0\right)$ is that for a matrix $A^{n \times n}$, for any power $k \geq n, A^{k}$ can be written as

$$
A^{k}=\beta_{n-1}^{k} A^{n-1}+\beta_{n-2}^{k} A^{n-2}+\cdots \beta_{1}^{k} A+\beta_{0}^{k} I
$$

for some coefficients $\beta_{n-1}^{k}, \ldots \beta_{0}^{k}$. Use this fact to show that

$$
\mathcal{R}\left(\left[\begin{array}{lllll}
A^{k} B & A^{k-1} B & \cdots & A B & B
\end{array}\right]\right)=\mathcal{R}\left(\left[\begin{array}{lllll}
A^{n-1} B & A^{n-2} B & \cdots & A B & B
\end{array}\right]\right)
$$

for any $B \in \mathbb{R}^{n \times m}$ and $k \geq n$.

## 4. Controllability Tests

Test whether or not the following pairs $(A, B)$ are controllable.

- (PTS: 0-2)

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right], \quad B=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

- (PTS: 0-2)

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 3
\end{array}\right], \quad B=\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right]
$$

- (PTS: 0-2)

$$
A=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \quad B=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]
$$

- (PTS: 0-2)

$$
A=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \quad B=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

## 5. Non-controllable Systems

Each of the following systems of the form

$$
\dot{x}=A x+B u, \quad x(0)=x^{0}
$$

is not controllable. For each system find an eigenvector direction that evolves on it's own completely independent of the control input. Hint: To start, apply a coordinate transformation $x=P z$ that diagonalizes the $A$ matrix and find the coordinate $z_{i}$ that is unaffected by the control input.

- (PTS: 0-2)

$$
A=\left[\begin{array}{lll}
2 & 1 & 0 \\
1 & 2 & 0 \\
0 & 0 & 1
\end{array}\right], \quad B=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

- (PTS: 0-2)

$$
A=\left[\begin{array}{ccc}
0 & -1 & 1 \\
1 & 0 & -1 \\
-1 & 1 & 0
\end{array}\right], \quad B=\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]
$$

- (PTS: 0-2)

$$
A=\left[\begin{array}{ccc}
1 & -1 & -2 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right], \quad B=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]
$$

- (PTS: 0-2)

$$
A=\left[\begin{array}{ccc}
2 & 1 & 0 \\
1 & 2 & -1 \\
0 & 0 & 2
\end{array}\right], \quad B=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]
$$

- (PTS: 0-2)

$$
A=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right], \quad B=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

