
AE 510 - Linear Systems Theory - Winter 2021

Homework 8

Due Date: Monday, Mar 8th, 2021 at 11:59pm

1. Controllability/Observability: Coordinate Invariance
Consider a dynamical system

ẋ = Ax+Bu, x(0) = x0

y = Cx+Du

The system is controllable and observable. Show that under the coordinate transformation x = Tz

• (PTS: 0-2). The system is still controllable in the z-coordinates.
• (PTS: 0-2). The system is still observable in the z-coordinates.

2. Controllability/Observability Tests
Consider the dynamical system

ẋ = Ax+Bu

y = Cx+Du

where A ∈ Rn×n, B ∈ Rn×1, C ∈ R1×n, D ∈ R1×1 and A is diagonalizable with right and left
eigenvectors the columns and rows of P and Q respectively

P =

 | |
p1 . . . pn
| |

 , Q = P−1 =

− qT1 −
...

− qTn −

 (1)

• (PTS: 0-2) Suppose there exists a left eigenvector of A, qT ∈ Rn such that qTB = 0. Show
that the system is not controllable.

• (PTS: 0-2) Suppose there exists a right eigenvector of A, p ∈ Rn such that Cp = 0. Show
that the system is not observable.

3. Feedback Control: Eigenvalue Placement
For the next few problems consider the aircraft pitch model with the form

ẋ = Ax+Bu, x(0) = x0

y = Cx+Du

with A ∈ Rn×n, B ∈ Rn×m, C ∈ Ro×n, and D ∈ Ro×m.

• Aircraft Pitch



System Parameters

α = angle of attack q = pitch rate
θ = pitch angle δ = elevator deflection angle
µ = ρSc̄

4m ρ = air density
S = area of wing c̄ = mean chord length
m = aircraft mass Ω = 2U

c̄

U = equilibrium flight of speed CT = Coefficient of Thrust
CD = Coefficient of Drag CL = Coefficient of Lift
CW = Coefficient of Weight CM = Coefficient of Pitch Moment
γ = Flight path angle σ = 1

1+µCL
= constant

iyy = normalized moment of inertia η = µσCM = constant

Equations of Motion:

α̇ = µΩσ

[
− (CL + CD)α+

1

(µ− CL)
q − (CW sin γ) θ + CL

]
q̇ =

µΩ

2iyy
[[CM − η (CL + CD)]α+ [CM + σCM (1− µCL)] q + (ηCW sin γ) δ]

θ̇ = Ωq

State-space: α̇

q̇

θ̇

 =

 −0.313 56.7 0

−0.0139 −0.426 0

0 56.7 0


 α

q

θ

+

 0.232

0.0203

0

 [δ], x[0] =

 π
16

−π
8

π
12


y =

[
0 0 1

] α

q

θ


Follow the steps given to design a feedback gain matrix K that stabilizes the closed-loop system
matrix A+BK

(a) (PTS: 0-2) Compute the characteristic polynomial of A.

det(λI −A) = λn + αn−1λ
n−1 + · · ·+ α1λ+ α0

Select (distinct) desired eigenvalues λ1, . . . , λn for the closed loop system A + BK so that
the closed loop system will be stable. (If you want eigenvalues that will make the closed loop
system A+BK well conditioned you can use the lqr command in Matlab or control.lqr in



Python to design the optimal LQR gains Klqr and then compute the eigenvalues of A+BKlqr
for the desired eigenvalues. You can use the cost matrices Q = I3×3 and R = 1. Of course,
doing this and then going back and doing pole placement would be silly if this wasn’t a
homework problem, but whatever. )
Compute the desired characteristic polynomial for A+BK using the formula

det(λI − (A+BK)) = Πi(λ− λi) = λn + βn−1λ
n−1 + · · ·+ β1λ+ β0

(b) (PTS: 0-2) If the system is controllable, compute a coordinate transformation x = Tz such
that the system in the z coordinates is in controllable canonical form

ż = Āz + B̄u

where

Ā =


0 1 0 · · · 0

0 0 1 · · · 0
... . . . ...
0 0 0 · · · 1

−α0 −α1 −α2 · · · −αn−1

 , B̄ =


0
...
0

1


Use the fact that if T exists, then the controllability matrix in the two different coordinates
are related by [

Ān−1B̄ · · · ĀB̄ B̄
]
= T−1

[
An−1B · · · AB B

]
(2)

(c) (PTS: 0-2) Compute the gain matrix K̄ such that Ā + B̄K̄ has the desired characterisitic
polynomial. λn + βn−1λ

n−1 + · · ·+ β1λ+ β0.
(d) (PTS: 0-2) Compute the feedback gain matrix K so that the closed loop system matrix

A+BK has the desired characteristic polynomial using K̄ and T .
(e) (PTS: 0-2) Check that the closed-loop system matrix A+BK is stable.

4. Observability and Least Squares
For the aircraft pitch system perform the following steps

(a) (PTS: 0-2) Check whether or not the closed-loop system is observable.
(b) (PTS: 0-2) Simulate the trajectory forward using the feedback gain you computed in the

previous problem from the initial condition given in the model for 100 time steps with a time
step size of ∆t = 0.01 seconds. At each time t, compute the output with added sensor noise
using the equation

y(t) = Cx(t) + v(t), v(t) ∼ N (0, 1)

where v(t) is a scalar Gaussian random variable with normal distribution N (0, 1) with mean
0 and variance 1. You can find Matlab and python functions to sample from a normal
distribution to compute v(t) at each time step. (Note that since θ is measured in radians, a
noise covariance of 1 is quite large.)



(c) (PTS: 0-2) If the system is observable, use the output trajectory y(0), . . . , y(T ) and the
method of least squares to compute the initial condition x(0). Try different values for the
final time T including T = 3 (the minimum final time possible), T = 10, and T = 100. Which
version gives you the best estimate of x(0)?

5. Observer Design and the Separation Principle

For the two systems above

(a) (PTS: 0-2) Write down the estimator dynamics for a state estimate x̂ ∈ Rn given a linear
system of the form

ẋ = Ax+Bu

y = Cx+Du

with A ∈ Rn×n, B ∈ Rn×1, C ∈ R1×n, and D ∈ R1×1.
Note that these should include the observer gain L ∈ Rn×1 times the output estimate error.

(b) (PTS: 0-2) Write down the joint dynamics of the true state x ∈ Rn and the estimator state
x̂ ∈ Rn.

(c) (PTS: 0-2) Write down the coordinate transformation T ∈ R2n×2n such that[
x

e

]
= T

[
x

x̂

]

where e ∈ Rn is the error in the state estimate e = x̂−x. Use this coordinate transformation

to transform the dynamics from the previous part into dynamics for
[
x

e

]
.

(d) (PTS: 0-2) Show that the stability of the joint dynamics depends on the stability of A+BK

and A+ LC separately.
(e) (PTS:0-2) For the aircraft pitch model given above, design observer gains L ∈ Rn×1 such

that the matrix A+ LC is stable. If you want you can use the pole placement method from
the previous problem, but you can also just use the Matlab place command (or the lqr
command) which should be significantly faster.

(f) Simulate the joint state-error system using the observer gain L computed above and the
control input u = Kx̂+ r where K is the feedback gain computed above and r is each of the
two following reference signals. Use the initial conditions x(0) given with the dynamics and
the initial state estimate x̂(0) = 0.

• (PTS: 0-2) r = 1

• (PTS: 0-2) r = γ sin(ωt) (Pick a γ and ω you find interesting.)
(g) (PTS: 0-2) Plot the state, error, and control trajectories for each case.


