Controllability

Observability

Review of the solution to LTI systems

The continuous linear time-invariant (CLTI) system
$\dot{x}=A x+B u \quad y=C(x)+D u \quad x\left(t_{0}\right)=x_{0} \in \mathbb{R}^{n}$
The solution to this system is given by
$x(t)=e^{\left(A\left(t-t_{0}\right)\right.} \widehat{x_{0}}+\int_{t_{0}}^{t} e^{A(t-\tau)} \operatorname{Br(\tau)} d \tau \quad(A, B)$
$y(t)=C e^{A\left(t-t_{0}\right)}\left(x_{0}+\int_{t_{0}}^{t} C e^{A(t-\tau)} B u(\tau) d \tau+D \underline{(t)} \quad(A, C)\right.$
The homogeneous CLTI (H-CLTI) system
$\dot{x}=A x$
The solution to this system is given by
$x(t)=\Phi\left(t, t_{0}\right) x_{0}=e^{A\left(t-t_{0}\right)} x_{0}$

Review of the solution to LTI systems

The discrete linear time-invariant (DLTI) system
$x_{k+1}=A x_{k}+B u_{k} \quad y_{k}=C x_{k}+D u_{k} \quad x\left(t_{0}\right)=x_{0} \in \mathbb{R}^{n}$
The solution to this system is given by
$x_{k}=A^{k} x[0]+\sum_{m=0}^{k-1} A^{k-1-m} B u[m]$
$y_{k}=C A^{k} x[0]+\sum_{m=0}^{k-1} C A^{k-1-m} B u[m]+D u[k]$
The homogeneous DLTI (H-DLTI) system
$x_{k+1}=A x_{k}$
The solution to this system is given by
$x_{k+1}=A^{k} x[0]$

Definition of controllable system

- Continuous time

$$
\dot{x}=A x+B u
$$

The state equation above or the pair (A, B) is said to be controllable if for any initial state $x(0)=x_{0}$ and any fiñal state x_{1}, there exists an input that transfers x_{0} to x_{1} in a finite time. Otherwise this state equation or (A, B) is said to be uncontrollable.

- Discrete time

$$
x_{k+1}=A \underline{\underline{x_{k}}}+B \underline{\underline{u_{k}}} \quad x \in \mathbb{R}^{n} .
$$

The state equation above or the pair (A, B) is said to be controllable if for any initial state $x(0)=x_{0}$ and any final state x_{1}, there exists an input sequence of finite lenath that transfers x_{0} to x_{1}. Otherwise this state equation or (A, B) is said to be uncontrollable.

Uncontrollable systems

parallel RC system
if $x_{1}(0)=x_{2}(0)=0$
then $x_{1}(t)=x_{2}(t) \quad \forall t \geqslant 0$.
$x_{f}=\left[\begin{array}{l}5 \\ 10\end{array}\right]$. from $x_{0}=\left[\begin{array}{l}0 \\ 0\end{array}\right]$
\uparrow cannot reach this state.

if $x(0)=0$ initial.

$$
x(t)=0 \quad \forall t \geqslant 0 .
$$

$$
\dot{x}=A x+B u .
$$

Test if a system is controllable $x_{k A}=A x_{k}+B u_{k}$.

Theorem (6.D1 in Chen's book) The following statements are equivalent

1. The n -dimensional pair (A, B) is controllable.

The $n \times n$ matrix
is nonsingular.

$$
\begin{aligned}
W_{d c}[n-1] & =\sum_{m=0}^{n-1} \xlongequal[(A)^{m} B B^{\prime}\left(A^{\prime}\right)^{m}]{ }\left\|B^{\top}\left(A^{\top}\right)^{m}\right\|_{2}^{2} \\
X_{k+1} & =A^{k} X_{0}+\sum_{m=0}^{k-1-m} B U[m]_{1}
\end{aligned}
$$

3. The $n \times n p$ controllability matrix

$$
\frac{C_{d}=\left[\begin{array}{lllll}
B & A B & A^{2} B & \cdots & \left.\underline{A^{n-1} B}\right] \\
n & n p
\end{array}\right] . n \text { rank) }}{}
$$

Has rank n (full row rank).
PBH The $n \times(n+p)$ matrix $[A-\lambda I \quad B]$ has full row rank at every eigenvalue, λ, of $\mathrm{A} \forall \lambda \in \mathbb{C}$
5. If, in addition, all eigenvalues of A have magnitudes less than 1 , then the unique solution of

$$
W_{d c}-A W_{d c} A^{\prime}=-B B B^{\prime} \quad \text { Lyapunov equation. }
$$

is positive definite. The solution is called the discrete Controllability Grammian and can be expressed as

$$
W_{d c}=\sum_{m=0}^{\infty} A^{m} B B^{\prime}(A)^{m}
$$

Test if a system is controllable

Theorem (6.1 in Chen's book)

1. The n -dimensional pair (A, B) is controllable.
2. The $n \times n$ matrix

$$
W_{c}(t)=\int_{0}^{t} e^{A \tau} B B^{\prime} e^{A^{\prime} \tau} d \tau=\int_{0}^{t} e^{A(t-\tau)} B B^{\prime} e^{A^{\prime}(t-\tau)} d \tau
$$

is nonsingular for any $t>0$
3. The $n \times n p$ controllability matrix

$$
\underline{C}=\left[\begin{array}{lllll}
B & A B & A^{2} B & \cdots & A^{n-1} B
\end{array}\right]
$$

has rank n (full row rank)
4. The $n \times(n+p)$ matrix $\left.\begin{array}{ll}A-\lambda I & B\end{array}\right]$ has full row rank at every eigenvalue, λ, of $\mathrm{A} P \mathrm{PH}$.
5. If, in addition, all eigenvalues of A have negative real parts, then the unique solution of

$$
A W_{c}+W_{c} A^{\prime}=-B B^{\prime}
$$

is positive definite. The solution is called the Controllability Grammian and can be expressed as

$$
W_{c}=\int_{0}^{\infty} e^{A \tau} B B^{\prime} e^{A^{\prime} \tau} d \tau
$$

Proof of theorem 6.1

- Controllability matrix for DLTI
- Statement 1 and 2 for CLTI
- PBH test
statement.
(A, B) is controllable $\Leftrightarrow \operatorname{rank}(C)=n$.

$$
C=\left[\begin{array}{lllll}
B & A B & A^{2} B & \cdots & A^{n-1} B
\end{array}\right] \quad A^{n} B \quad A^{n+1} B . \quad k \geqslant n .
$$

Cayley Hamilton Theorem

$$
\begin{aligned}
& P(A)=\frac{A^{n}+a_{n-1} A^{n-1}+\cdots+a_{1} A+a_{0}=0}{A^{n}=a_{n-1} A^{n-1}+a_{n-2} A^{n-2}+\cdots+a_{1} A+a_{0} I=0}
\end{aligned}
$$

for $k \geqslant n \quad A^{k}$ can be expressed as linear combination of

$$
\left\{A^{n-1} A^{n-2} \cdots A \geq\right\}
$$

$$
A^{n} B=a_{n-1} A^{n-1} B+a_{n-2} A^{n-2} B+\cdots+a_{1} A B+a_{0} B
$$

$A^{k} B$ can be expressed as a linear combination of $\left\{A^{n-1} B, \cdots A B, B\right\}$ for the discrete LTI $\quad x_{k+1}=A x_{k}+B u_{k}$

$$
x_{k+1}=A^{k+1} x_{0}+\sum_{m=0}^{k} A^{k-1-m} B u[m]
$$

at time step n.

$$
\begin{aligned}
& x_{n}=A^{n} x_{0}+\sum_{m=0}^{n-1} A^{n-1-m} B U[m] \\
& x_{f}=A^{n} x_{0}+\left[\begin{array}{lllll}
A^{n-1} B & A^{n-2} B & \cdots & A B & B
\end{array}\right]\left[\begin{array}{c}
u[0] \\
u[1 \\
\vdots \\
u[(n-2] \\
u[n-1
\end{array}\right] \\
& =A^{n}\left(x_{0}\right)+\frac{\left[\begin{array}{llll}
B & A B & \cdots & A^{n-2} B \\
C_{n \times n P}^{n-1} & B
\end{array}\right]}{C_{n \times 1}^{u}}\left[\begin{array}{c}
u[n-1] \\
\vdots \\
u[0] \\
u[0]
\end{array}\right] \\
& x_{n}-A^{n} x_{0}= \\
& n=\frac{\operatorname{rank}(C)}{\text { basis for } 1 R^{2} .} \begin{array}{c}
1 \\
u_{1} n .
\end{array}
\end{aligned}
$$

Application:
compute C first then Compute rank (C)

Spring - mass - damper

$$
\begin{aligned}
& \dot{x}=\left[\begin{array}{cc}
0 & 1 \\
-\frac{k}{m} & -\frac{d}{m}
\end{array}\right] x+\left[\begin{array}{c}
0 \\
\frac{1}{m}
\end{array}\right] u \quad n=2 . \\
& C=\left[\begin{array}{ll}
B & A B
\end{array}\right]=\left[\begin{array}{cc}
0 & \frac{1}{m} \\
\frac{1}{m} & -\frac{d}{m^{2}}
\end{array}\right] \quad \operatorname{rank}(C)=2 .
\end{aligned}
$$

this system is controllable

Example

Consider the following system (inverted pendulum, example 2.8 in Chen's book)

$$
\begin{aligned}
& \begin{array}{l}
\dot{x}=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 5 & 0
\end{array}\right] x+\left[\begin{array}{c}
0 \\
1 \\
0 \\
-2
\end{array}\right] u \\
y=\left[\begin{array}{llll}
1 & 0 & 0 & 0
\end{array}\right] x
\end{array} \\
& C=\left[\begin{array}{cccc}
0 & 1 & 0 & 2 \\
1 & 0 & 2 & 0 \\
0 & -2 & 0 & -10 \\
-2 & 0 & -10 & 0 \\
B & A B & A^{2} B & A^{3} B
\end{array}\right] \\
& \operatorname{rank}(C)=4 .
\end{aligned}
$$

(A, B) is controllable $\Leftrightarrow W_{c}(t)$ is nonsingular $\forall t \geqslant 0$.

$$
\begin{aligned}
W_{c}(t)= & \int_{0}^{t} \frac{e^{A \tau} B B^{\top} e^{A^{\top} \tau} d \tau}{} \Leftarrow \quad e^{A^{2}} B B^{\top} e^{A^{\top} \tau}=\left\|B^{\top} e^{A^{\top} \tau}\right\|_{2}^{2}>0 \\
& W_{c}^{-1}
\end{aligned}
$$

if given initial state x_{0}, for any given x_{1}. find an input such that $x\left(t_{1}\right)=x_{1}$.

$$
\begin{aligned}
& u(t)=-B^{\top} e^{A^{\top}\left(t_{1}-\frac{t}{\tau}\right)} W_{c}^{-1}\left(t_{1}\right)\left[e^{A t_{1}} x_{0}-x_{1}\right] \\
&= e^{A\left(t_{1}\right)}=\frac{e^{A t_{1}} x_{0}+\int_{0}^{t_{1}} e^{A\left(t_{1}-\tau\right)} B u(\tau) d \tau}{W_{0}-\left(t_{1}\right)} \int_{0}^{t_{1}} e^{A\left(t_{1}-\tau\right)} B B^{\top} e^{A^{\top}\left(t_{1}-\tau\right)} d \tau \cdot W_{c}^{-1}\left(t_{1}\right)\left[e^{\left.A t_{1}-x_{1}\right]}\right. \\
&= e^{A t_{1}} x_{0}-e^{A t_{1}} x_{0}+x_{1} \\
&= x_{1}
\end{aligned}
$$

$" \Rightarrow$ if (A, B) is controllable, then $W_{c}(t)$ is nonsinglar for all $t \geqslant 0$. $W_{c}(t)>0$. by constructing controdiction.
Assume (A, B) is ctrb, but $W_{c}\left(t_{1}\right)$ is singular, if A is singular, A has 0 eigenvalue.

$$
\exists v \neq 0, \quad A v=\lambda v=0 \Rightarrow v^{\top} A v=0 .
$$

then there exists a vector $V \neq 0$
$\left.V^{\top} W_{(t)}{ }^{2}\right)=0$

$$
\begin{aligned}
& \Rightarrow \int_{0}^{t_{1}} e^{A\left(t_{1}-\tau\right)} B B^{\top} e^{A^{\top}\left(t_{1}-\tau\right)} v d \tau=0 \\
& x^{\top} x=\| x n_{2}^{2} \\
&=\int_{0}^{t_{1}} \frac{\left\|B^{\top} e^{A^{\top}\left(t_{1}-\tau\right)} V\right\|_{2}^{2} d \tau}{L_{\text {always }} \geqslant 0}=0 \\
& \Rightarrow B^{\top} e^{A^{\top}\left(t_{1}-\tau\right)} v \equiv 0 \quad \forall \tau \in\left[0, t_{1}\right]
\end{aligned}
$$

(A, B) is ctrb, for the initial state $x\left(t_{0}\right)=e^{-A t_{1}} V$, and the final state $x\left(t_{1}\right)=0$.

$$
x\left(t_{\cdot}\right)=0=e^{A t_{1}} e^{-A t_{1}} v+\int_{0}^{t_{1}} e^{A\left(t_{r}-\tau\right)} B u(\tau) d \tau .
$$

multiply by v^{\top} on both sides. $p 0$.

$$
\begin{aligned}
& 0=V^{\top} V+\int_{0}^{t_{1}} V^{\top} e^{A\left(t_{1}-\tau\right)} u(\tau) d \tau . \\
& \Rightarrow 0=V^{\top} V \Rightarrow V=0
\end{aligned}
$$

$V=0$ contradict with assumption $V \neq 0$. then $W_{c}(t)$ is nonsingular.

PBH test
Popov - Belevitch - Hautus
(A, B) is controllable $\Leftrightarrow \operatorname{rank}[A-\lambda I B]=n \quad \forall \lambda \in \mathbb{C}$
$\operatorname{rank}(A-\lambda I)=$.$n for \lambda \notin \operatorname{eig}(A)$.
if $\lambda \in \operatorname{eig}(A) \quad \operatorname{det}(A-\lambda I)=0 \quad \operatorname{rank}(A-\lambda I)<n$.
we only care about $\lambda \in$ eig(A)
B needs to "increase rank".
$\Rightarrow B \notin \operatorname{rank}\left(A-\lambda_{i} I\right) \quad \forall \lambda i$
fundamental theory of $\operatorname{rank}\left(A-\lambda_{i} I\right)+n u l l\left(A-\lambda_{i} I\right)^{\top}=n$. linear algebra V_{i}. is left eigenvedro of A.
B needs to have some component in each left eigen vector direction. if the columns of B orthogonal to a left eigerveet of A, B cannot have component in this direction

* there is no left eigenvector of A orthogonal to the columns of B.
* (Advanced topic) if B is a random vector then (A, B) will be ctrb with high probability. $(\operatorname{rank}[A-\lambda I B]=n)$
$*(A, B)$ is curb \Leftrightarrow there is no eigenvector of A^{\top} in the null space of B^{\top}
\Rightarrow there is no left eigenvector of A orthogonal to columns of B
$\Leftrightarrow \operatorname{ank}\left[A-\lambda_{i} I\right.$ B] for $\lambda \in \operatorname{eig}(A)$.
By the fundamental theorem of linear algebra,
codomain $(A)=R(A) \oplus N\left(A^{\top}\right)$
$\operatorname{dim} N\left([A-\lambda I B]^{\top}\right]+\operatorname{rank}[A-\lambda I B]=n$.
if $\operatorname{rank}[A-\lambda I B]=n$.
then $N\left(\left[\begin{array}{c}A^{\top}-\lambda I \\ B^{\top}\end{array}\right]\right)=\{0\}$
\Rightarrow there is no $V \neq 0$ sit. $\begin{aligned} & A^{T} V=a V \text { \& } \\ & B^{T} V=0 .\end{aligned}$
" \Rightarrow " if (A, B) is ctrb, then there is NO eigenvector of A^{\top} lives in $N\left(B^{\top}\right)$.
Assume (A, B) is cola there exists an eigenvalue

$$
\begin{aligned}
& A^{\top} V=\lambda V(V \neq 0) \quad \text { and } \quad B^{\top} V=0 . \\
& C=\left[\begin{array}{lll}
A B & \cdots & A^{n-1} B
\end{array}\right] \\
& \left.C^{\top}=\left[\begin{array}{l}
B^{\top} \\
B^{\top} A^{\top} \\
\vdots \\
B^{\top}\left(A^{\top}\right)^{n-1}
\end{array}\right] \quad \frac{C^{\top} V=\left[\begin{array}{l}
B^{\top} V=0 \\
V \neq 0
\end{array}\right]=0 .}{\frac{B^{\top} A^{\top} V \lambda v}{\vdots}} \begin{array}{l}
B^{\top}\left(A^{\top}\right)^{n-1} V
\end{array}\right] \rightarrow B^{\top} V \\
& \operatorname{rank}\left(C^{\top}\right)=\operatorname{rank}(C)<n .
\end{aligned}
$$

contradicts with (A, B) is ctr.
" E "contrapositive. $\begin{array}{lll}P \rightarrow Q . \\ \neg Q & \xrightarrow{\rightarrow} & \neg P\end{array} \quad \begin{aligned} & \text { inverse } \\ & \text { converse }\end{aligned} \quad Q \rightarrow P \rightarrow Q$.
if there is ND eigenvector of A^{\top} in $N\left(B^{\top}\right)$, then (A, B) is ctr
if (A, B) is not ctrb, then there exists eigenvector of

$$
\begin{aligned}
& A^{\top} \in N\left(B^{\top}\right) \\
& \bar{A}=T^{-1} A T=\left[\begin{array}{ll}
\overline{A_{11}} & \overline{A_{12}} \\
0 & \overline{A_{22}}
\end{array}\right] \begin{array}{l}
\bar{B}=T^{-1} B=\left[\begin{array}{l}
\bar{B}_{11} \\
0
\end{array}\right] \\
A=T \bar{A} T^{-1}
\end{array} \\
& \tilde{A}_{22} W_{22}=\lambda W_{22} \\
& W=\left(T^{-1}\right)^{\top}\left[\begin{array}{c}
0 \\
W_{22}
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
W^{\top} \underline{A} & =\left[\begin{array}{ll}
0 & W_{22}^{\top}
\end{array}\right] T^{\top} T^{\prime}\left[\begin{array}{ll}
\bar{A}_{11} & \bar{A}_{12} \\
0 & \bar{A}_{22}
\end{array}\right]^{T^{-1}} \\
& =\left[\begin{array}{ll}
0 & W_{22}^{\top}
\end{array}\right]\left[\begin{array}{cc}
\bar{A}_{11} & \overline{A_{12}} \\
0 & \overline{A_{22}}
\end{array}\right]^{-1} \\
& =\left[\begin{array}{ll}
0 & W_{22}^{\top} \overline{A_{22}}
\end{array}\right] T^{-1} \\
& =\lambda\left[\begin{array}{ll}
0 & W_{22}^{\top}
\end{array}\right] T^{-1}=\lambda W^{\top} \\
W^{\top} B & =\left[\begin{array}{ll}
0 \\
W_{22}
\end{array}\right]^{\top} T^{-1} T\left[\begin{array}{c}
\top \\
0
\end{array}\right] \\
& =\left[\begin{array}{ll}
0 & W_{22}^{\top}
\end{array}\right]\left[\begin{array}{c}
\widetilde{B_{n}} \\
0
\end{array}\right]=0
\end{aligned}
$$

This proof needs information about controllable canonical form.

Example

$$
\dot{x}=\underline{\left[\begin{array}{cc}
-0.5 & 0 \\
0 & -1
\end{array}\right]} x+\left[\begin{array}{c}
0.5 \\
1
\end{array}\right] u
$$

1. $C=\left[\begin{array}{ll}B & A B\end{array}\right]=\left[\begin{array}{cc}0.5 & -0.25 \\ 1 & -1\end{array}\right] \quad \operatorname{rank}(C)=2$.
$A^{2} B A^{3} B$.
$2 \theta(t) \geqslant 0 . t_{1}=2$. $W_{c}(2)=\int_{0}^{t} e^{A \tau} B B^{\top} e^{A^{\top} \tau} d \tau$

$$
\begin{aligned}
& =\frac{\int_{0}^{2}\left[\begin{array}{cc}
e^{-0.5 \tau} & 0 \\
0 & e^{-\tau}
\end{array}\right]\left[\begin{array}{c}
0.5 \\
1
\end{array}\right]\left[\begin{array}{ll}
0.5 & 1
\end{array}\right]\left[\begin{array}{cc}
e^{-0.5 \tau} & 0 \\
0 & e^{-\tau}
\end{array}\right] d \tau}{=\left[\begin{array}{ll}
0.2162 & 0.3167 \\
0.3167 & 0.4908
\end{array}\right] \quad \operatorname{eig}\left(W_{c}\right)=0.0083} \begin{array}{c}
0.6987 .
\end{array}
\end{aligned}
$$

3. PBH test. $[A-\lambda I \quad B]_{n \times(n+p)} B=a V_{1}+b V_{2}$

$$
\text { Pig }(A)=-0.5, V_{2} V_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] V_{2}\left[\begin{array}{l}
1 \\
1
\end{array}\right]=0.5 V_{1}+1 . \underline{V_{2}}
$$

$$
\left[\begin{array}{lll}
A-(-0.5) I & B
\end{array}\right]=\left[\begin{array}{lcc}
0 & 0 & 0.5 \\
0 & -0.5 & 1
\end{array}\right] \leftarrow \operatorname{rank}=2 \text {. }
$$

$$
\left[\begin{array}{lll}
A-(-1) & I & B
\end{array}\right]=\left[\begin{array}{ccc}
0.5 & 0 & 0.5 \\
0 & 0 & 1
\end{array}\right] \quad \text { rank }=2
$$

4. $\lambda(A)<0$. for $A W+W A=-B B^{\top}$

Lyapurov equation
Lyap $\left(A, Q\right.$) in Matlab $Q=B B^{\top}$

$$
\underline{W}=\left[\begin{array}{ll}
\frac{1}{4} & \frac{1}{3} \\
\frac{1}{3} & \frac{1}{2}
\end{array}\right] \quad \text { eig }(w)=0.019
$$

Test if a system is controllable

Theorem (6.1 in Chen's book)

1. The n-dimensional pair (A, B) is controllable.
2. The $n \times n$ matrix

$$
W_{c}(t) \neq \int_{0}^{t} e^{A \tau} B B^{\prime} e^{A^{\prime} \tau} d \tau=\int_{0}^{t} e^{A(t-\tau)} B B^{\prime} e^{A^{\prime}(t-\tau)} d \tau
$$

is nonsingular for any $t>0$
(3.) The $n \times n p$ controllability matrix to test if a system is cor.
compute $C=\left[\begin{array}{lllll}B & A B & A^{2} B & \cdots & A^{n-1} B\end{array}\right]$ then compute $\operatorname{rank}(C)$
has rank n (full row rank)
4. The $n \times(n+p)$ matrix $\left[\begin{array}{ll}A-\lambda I & B\end{array}\right]$ has full row rank at every eigenvalue, λ, of A
5. If, in addition, all eigenvalues of A have negative real parts, then the unique solution of

$$
A W_{c}+W_{c} A^{\prime}=-B B^{\prime}
$$

is positive definite. The solution is called the Controllability Grammian and can be expressed as

$$
W_{c}=\int_{0}^{\infty} e^{A \tau} B B^{\prime} e^{A^{\prime} \tau} d \tau
$$

Controllability indices

We consider the following system

$$
\begin{aligned}
& \begin{array}{l}
\dot{x}=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
3 & 0 & 0 & 2 \\
0 & 0 & 0 & 1 \\
0 & -2 & 0 & 0
\end{array}\right] x+\left[\begin{array}{ll}
0 & 0 \\
1 & 0 \\
0 & 0 \\
0 & 1
\end{array}\right] u \stackrel{n=4 .}{B_{1}} \quad P=1 . C \in \mathbb{R}^{n \times n} \\
y=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] x
\end{array}
\end{aligned}
$$

Controllability indices
$A^{4} b_{1} \cdot A^{5} b_{1}$
Assume that B has rank p (full column rank).
The controllability matrix can be written as $A^{3} b_{1}$ depends on

$$
C=\left[\begin{array}{lll}
\left(b_{1}\right) & \cdots & \left(b_{p}\right)
\end{array}: \begin{array}{lll}
A b_{1} & \cdots & A b_{p} \\
\left\{\begin{array}{llll}
A^{2} \cdot b_{1} & \vdots & \left.\begin{array}{|lll}
A^{n-1} b_{1} & \cdots & A^{n-1} b_{p}
\end{array}\right]
\end{array}\right]
\end{array}\right.
$$

if $A^{i} b_{m}$ depends on $\left\{b_{m}, A b_{m}, \cdots A^{i-1} b_{m}\right\}$.
The linearly independent columns associated with b_{m} : so does $A^{i+1} b$

$$
\text { The } \xlongequal{\left\{\begin{array}{l}
\text { controllability indices } \\
b_{m} \\
u_{1} \\
u_{2}, \\
u_{p}
\end{array}\right.} \cdot \frac{\left.A^{u_{m}-1} b_{n}\right\}}{}
$$

$u=\max \left\{u_{1}, u_{2}, \cdots u_{p}\right\}$ controllability index

