AE 513-Multivariable Control - Autumn 2019

Homework 2

Due Date: Thursday, Oct $17^{\text {th }}, 2019$ at 11:59pm

1. Similar Eigenvalues

(a) (PTS: 0-2) Let $A \in \mathbb{R}^{n \times n}$ and let $T \in \mathbb{R}^{n \times n}$ be any non-singular matrix. Show that the eigenvalues of A are the same as those of $T^{-1} A T$.
(b) (PTS: 0-2) Let $A, B \in \mathbb{R}^{n \times n}$ be invertible matrices. Show that the eigenvalues of $A B$ are the same as those of $B A$.

2. Computing Eigenvalues and Diagonalization

Compute eigenvalues and right eigenvectors for each of the following matrices. Write out a diagonalization for each matrix. If the matrix has complex eigenvalues, then write it in both of these forms.

$$
\left[\begin{array}{cc}
\mid & \mid \\
\frac{1}{\sqrt{2}}(u-v i) & \frac{1}{\sqrt{2}}(u+v i) \\
\mid & \mid
\end{array}\right]\left[\begin{array}{cc}
a+b i & 0 \\
0 & a-b i
\end{array}\right]\left[\begin{array}{l}
-\frac{1}{\sqrt{2}}\left(w^{T}+y^{T} i\right)- \\
-\frac{1}{\sqrt{2}}\left(w^{T}-y^{T} i\right)-
\end{array}\right]=\left[\begin{array}{cc}
\mid & \mid \\
u & v \\
\mid & \mid
\end{array}\right]\left[\begin{array}{cc}
a & -b \\
b & a
\end{array}\right]\left[\begin{array}{c}
-w^{T}- \\
-y^{T}-
\end{array}\right]
$$

(a) (PTS: 0-2) Eigenvalues, (PTS: 0-2) Eigenvectors, (PTS: 0-2) Diagonal form, (PTS: 0-2), Complex form?

$$
A=\frac{1}{2}\left[\begin{array}{cc}
3 & -1 \\
-1 & 3
\end{array}\right]
$$

(b) (PTS: 0-2) Eigenvalues, (PTS: 0-2) Eigenvectors, (PTS: 0-2) Diagonal form, (PTS: 0-2), Complex form?

$$
A=\left[\begin{array}{ll}
1 & -2 \\
0 & -1
\end{array}\right]
$$

(c) (PTS: 0-2) Eigenvalues, (PTS: 0-2) Eigenvectors, (PTS: 0-2) Diagonal form, (PTS: 0-2), Complex form?

$$
A=\left[\begin{array}{cc}
1 & 1 \\
-2 & -1
\end{array}\right]
$$

(d) (PTS: 0-2) Eigenvalues, (PTS: 0-2) Eigenvectors, (PTS: 0-2) Diagonal form, (PTS: 0-2), Complex form?

$$
A=\left[\begin{array}{cc}
-1 & -1 \\
1 & -1
\end{array}\right]
$$

3. Cayley-Hamilton Theorem

(a) (PTS: 0-2) The eigenvalues of a matrix A are roots of its characteristic polynomial, $\chi(\lambda)=$ $\operatorname{det}(\lambda I-A)$, ie. $\operatorname{det}\left(\lambda_{i} I-A\right)=0$ if λ_{i} is an eigenvalue of A. Show that $\chi(A)=\mathbf{0}$ (where $\mathbf{0}$ is a matrix of zeros). (Hint: use the spectral mapping theorem).
(b) (PTS: 0-2). Suppose that $\chi(\lambda)=\operatorname{det}(\lambda I-A)=\lambda^{3}-2 \lambda^{2}+\lambda-1$. Use Cayley-Hamilton to write an expression for A^{6} in terms of A^{2}, A, I. Note that when you plug the matrix A into $\chi(\cdot)$ you replace each constant with that constant times the identity matrix, ie. $\chi(A)=$ $A^{3}-2 A^{2}+A-I$.

4. Rotation Matrices and Complex Eigenvectors

Consider the two rotation matrices

$$
R_{1}=\left[\begin{array}{cc}
\cos \theta_{1} & -\sin \theta_{1} \\
\sin \theta_{1} & \cos \theta_{1}
\end{array}\right], \quad R_{2}=\left[\begin{array}{cc}
\cos \theta_{2} & -\sin \theta_{2} \\
\sin \theta_{2} & \cos \theta_{2}
\end{array}\right]
$$

(a) (PTS: 0-2) Show that R_{1} and R_{2} commute, ie. $R_{1} R_{2}=R_{2} R_{1}$ (Note that most matrices do not commute. 2×2 rotation matrices are an exception.)
(b) (PTS: 0-2) Compute the inverse of R_{1}.
(c) (PTS: 0-2) Give a physical interpretation of $R_{1} R_{2}$ and R_{1}^{-1} related to the angles θ_{1} and θ_{2}.
(d) (PTS: 0-2) Consider a 2×2 real matrix A that can be diagonalized as

$$
A=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
\mid & \mid \\
(u-v i) & (u+v i) \\
\mid & \mid
\end{array}\right]\left[\begin{array}{cc}
r e^{i \theta} & 0 \\
0 & r e^{-i \theta}
\end{array}\right]\left[\begin{array}{cc}
\mid & \mid \\
(u-v i) & (u+v i) \\
\mid & \mid
\end{array}\right]^{-1} \sqrt{2}
$$

where $r \in R_{+}$and $u, v \in R^{2}$. Show that another valid diagonalization for A is

$$
A=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
\mid & \mid \\
\left(u^{\prime}-v^{\prime} i\right) & \left(u^{\prime}+v^{\prime} i\right) \\
\mid & \mid
\end{array}\right]\left[\begin{array}{cc}
r e^{i \theta} & 0 \\
0 & r e^{-i \theta}
\end{array}\right]\left[\begin{array}{cc}
\mid & \mid \\
\left(u^{\prime}-v^{\prime} i\right) & \left(u^{\prime}+v^{\prime} i\right) \\
\mid & \mid
\end{array}\right]^{-1} \sqrt{2}
$$

where $u^{\prime}=\cos (\phi) u+\sin (\phi) v$ and $v^{\prime}=-\sin (\phi) u+\cos (\phi) v$ for any angle ϕ.

5. Vector Fields and Stability

For each of the A matrices in Question 2, consider the system differential equation

$$
\dot{x}=A x
$$

(PTS: 0-2) What are the eigenvalues of $e^{A t}$? (PTS: 0-2) Decide if the system is stable. (PTS: $\mathbf{0 - 2)}$ Sketch the vector field for each system labeling the eigenvectors and show a sample trajectory.

6. Dynamical Systems

(a) (PTS: 0-2) If

$$
x(t)=e^{A t} x(0)+\int_{0}^{t} e^{A(t-\tau)} B u(\tau) d \tau
$$

Show that

$$
\dot{x}=\frac{d}{d t} x(t)=A x(t)+B u(t)
$$

(Hint: Leibniz integral rule will be helpful.)
(b) (PTS: 0-2) Consider the discrete time (time varying) update equation

$$
x[t+1]=A[t] x[t]+B[t] u[t]
$$

Write an expression for $x[t]$ in terms of the initial state $x[0], u[0], \ldots, u[t-1], A[0], \ldots, A[t-1]$, and $B[0], \ldots, B[t-1]$.

