AE 513-Multivariable Control - Autumn 2019

Homework 3

Due Date: Thursday, Oct $24^{\text {th }}, 2019$ at 11:59pm

1. Symmetric Matrices and Hessians

Let $Q \in R^{n \times n}$ be symmetric, $Q=Q^{\top}$, with distinct eigenvalues $\lambda_{i} \neq \lambda_{j}$.
(a) (PTS: 0-2) Show the eigenvectors are orthogonal.

Hint: for v_{i}, v_{j} look at quantity $v_{i}^{\top} Q v_{j}$.
(b) (PTS: 0-2) Show that if $x^{\top} Q x>0$ for all $x \in R^{n}$, then $\lambda_{i}>0$ for all i.
(c) (PTS: 0-2) Show that if $\lambda_{i}>0$ for each eigenvalue, then $x^{\top} Q x>0$ for all $x \in R^{n}$
(d) (PTS: 0-2) Assume A is not symmetric. Let $f(x)=x^{\top} A x$, show that $\frac{\partial^{2} f}{\partial x^{2}}$ is symmetric.
(e) (PTS: 0-2) Assume function $f(x)$ and $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, show that $\frac{\partial^{2} f}{\partial x^{2}}=\left[\frac{\partial^{2} f}{\partial x^{2}}\right]^{\top}$

2. Least Squares and Minimum Norm Solutions

(a) (PTS: 0-2) Consider $A \in R^{m \times n}$ where $m>n$ (A is "tall") and A has full-column rank (the columns are linear independent). Show that the least squares solution $x=\left(A^{\top} A\right)^{-1} A^{\top} y$, minimizes $|y-A x|^{2}$, ie. makes $A x$ as close as possible to y.
(b) (PTS: 0-2) Consider $A \in R^{m \times n}$ where $m<n$ (A is "fat") and A has full-row rank (the rows are linear independent). Let $x=A^{\top}\left(A A^{\top}\right)^{-1} y$ and $z \in R^{n}$ be any vector such that $y=A z$. Show that $|x| \leq|z|$.

3. Controllability/Observability and Eigenvectors

Consider the dynamical system

$$
\begin{array}{r}
\dot{x}=A x+B u \\
y=C x
\end{array}
$$

where $A \in R^{n \times n}, B \in R^{n \times 1}, C \in R^{1 \times n}$ and A is diagonalizable with right and left eigenvectors the columns and rows of P and Q respectively

$$
P=\left[\begin{array}{ccc}
\mid & & \mid \tag{1}\\
p_{1} & \ldots & p_{n} \\
\mid & & \mid
\end{array}\right], \quad Q=P^{-1}=\left[\begin{array}{ccc}
- & q_{1}^{T} & - \\
& \vdots & \\
- & q_{n}^{T} & -
\end{array}\right]
$$

(a) (PTS: 0-2) Suppose there exists a left eigenvector of $A, q_{i}^{T} \in R^{1 \times n}$ such that $q_{i}^{T} B=0$. Show that the system is not controllable.
(b) (PTS: 0-2) Now suppose $q_{i}^{T} B \neq 0$ for all i, but the first two eigenvalues are the same. Show that the system is not controllable.
(c) (PTS: 0-2) Suppose there exists a right eigenvector of $A, p \in R^{n}$ such that $C p=0$. Show that the system is not observable.
(d) (PTS: 0-2) Now suppose that $C p_{i} \neq 0$ but the first two eigenvalues of the system are the same. Show that the system is not observable.

4. Linearizing a System

Given the inverted pendulum model below.

$$
\begin{aligned}
& (M+m) \ddot{x}+b \dot{x}+m l \ddot{\theta} \cos \theta-m l \dot{\theta}^{2} \sin \theta=F \\
& \left(I+m l^{2}\right) \ddot{\theta}+m g l \sin \theta=-m l \ddot{x} \cos \theta
\end{aligned}
$$

Linearize the equation of motion around the equilibrium point at

$$
\left[\begin{array}{l}
x \\
\dot{x} \\
\phi \\
\dot{\phi}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

where the assumptions are given as follow:

$$
\begin{aligned}
& \theta=\pi+\phi \\
& \dot{\theta}^{2}=\dot{\phi}^{2}=0 \\
& \text { small angle approximation for } \phi
\end{aligned}
$$

5. Controllability/Observability of Physical Systems

For each of the physical systems given, assess each of the following questions.
(a) (PTS: 0-2) Determine whether or not the system is stable or unstable.
(b) (PTS: 0-2) Compute the eigenvectors of the system.
(c) (PTS: 0-2) Give a qualitative physical interpretation of each of the eigenvectors in terms of the system states, which physical states are couple together and how.
(d) (PTS: 0-2) Is the system controllable or not?
(e) (PTS: 0-2) Is the system observable or not?
(f) (PTS: 0-2) From the continuous time dynamics given, compute the discrete time system matrices \bar{A}, \bar{B} for time step of $\Delta t=0.01$ seconds.

$$
\bar{A}=e^{A \Delta t}, \quad \bar{B}=\int_{0}^{\Delta t} e^{A(\Delta t-\tau)} B d \tau
$$

(g) (PTS: 0-2) If the system is controllable, compute the minimum norm open loop controller to drive the system to 0 in 200 time steps (using the discrete time system) for the initial state given.
(h) (PTS: 0-2) (If the system is controllable) Plot the minimum norm control signal over time and the corresponding state trajectories.
i.

Cruise Control

ii.

System Parameters
A. $m=$ vehicle mass 1000 kg
B. $b=$ damping $50 \mathrm{~N} . \mathrm{s} / \mathrm{m}$

Equations of Motion:

$$
\begin{aligned}
& m \dot{v}+b v=u \\
& y=v
\end{aligned}
$$

State-space:

$$
\begin{aligned}
{[\dot{v}] } & =\left[\frac{-b}{m}\right][v]+\left[\frac{1}{m}\right][u] \\
y & =[1][v] \\
{[\dot{v}] } & =[-0.05][v]+[0.001][u] \\
y & =[1][v] \\
x[0] & =10
\end{aligned}
$$

iii. DC Motor Position

System Parameters
A. $J=$ moment of inertia of the rotor $3.2284 e^{-6}\left[\mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$
B. $b=$ motor viscous friction constant $3.5077 e^{-6}[N \cdot m \cdot s]$
C. $K_{e}=$ electromotive force constant $0.0274[\mathrm{~V} / \mathrm{rad} / \mathrm{s}]$
D. $K_{t}=$ motor torque constant $0.0274[N \cdot m / A m p]$
E. $R=$ electric resistance $4.0[\mathrm{Ohm}]$
F. $L=$ electric inductance $2.75 e^{-6}[\mathrm{H}]$

Equations of Motion:

$$
\begin{aligned}
& T=K_{t} i \\
& e=K_{e} \dot{\theta} \\
& J \ddot{\theta}+b \dot{\theta}=K i \\
& L \frac{d i}{d t}+R i=V-K \dot{\theta}
\end{aligned}
$$

State-space:

$$
\begin{aligned}
& \frac{d}{d t}\left[\begin{array}{c}
\theta \\
\dot{\theta} \\
i
\end{array}\right]=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & -\frac{b}{J} & \frac{K}{J} \\
0 & -\frac{K}{L} & -\frac{R}{L}
\end{array}\right]\left[\begin{array}{c}
\theta \\
\dot{\theta} \\
i
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
\frac{1}{L}
\end{array}\right] V \\
& y=\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
\theta \\
\dot{\theta} \\
i
\end{array}\right] \\
& {\left[\begin{array}{c}
\dot{\theta} \\
\ddot{\theta} \\
\dot{i}
\end{array}\right]=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & -1.087 & 8487 \\
0 & -9964 & -1.455 e^{6}
\end{array}\right]\left[\begin{array}{l}
\theta \\
\dot{\theta} \\
i
\end{array}\right]+\left[\begin{array}{c}
0 \\
3.636 e^{5}
\end{array}\right] V } \\
& y=\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
\theta \\
\dot{\theta} \\
i
\end{array}\right] \\
& x[0]=\left[\begin{array}{c}
\frac{\pi}{2} \\
-\frac{\pi}{8} \\
2
\end{array}\right]
\end{aligned}
$$

iv. Suspension

Model of Bus Suspension System (1/4 Bus)

System Parameters
A. $M_{1}=1 / 4$ bus body mass $2500[k g]$
B. $M_{2}=$ suspension mass $320[\mathrm{~kg}]$
C. $K_{1}=$ spring constant of suspension system $80,000[\mathrm{~N} / \mathrm{m}]$
D. $K_{2}=$ spring constant of wheel and tire $500,000[\mathrm{~N} / \mathrm{m}]$
E. $b_{1}=$ damping constant of suspension system $350[N \cdot s / m]$
F. $b_{2}=$ damping constant of wheel and tire $15,020[N \cdots / m]$
G. $U=$ control force

Equations of Motion:

$$
\begin{aligned}
& M_{1} \ddot{X}_{1}=-b_{1}\left(\dot{X}_{1}-\dot{X}_{2}\right)-K_{1}\left(X_{1}-X_{2}\right)+U \\
& M_{2} \ddot{X}_{2}=b_{1}\left(\dot{X}_{1}-\dot{X}_{2}\right)+K_{1}\left(X_{1}-X_{2}\right)+b_{2}\left(\dot{W}-\dot{X}_{2}\right)+K_{2}\left(W-X_{2}\right)-U
\end{aligned}
$$

State-space:

$$
\begin{aligned}
& {\left[\begin{array}{c}
\dot{X}_{1} \\
\ddot{X}_{1} \\
\dot{X}_{2} \\
\ddot{X}_{2}
\end{array}\right] }=\left[\begin{array}{ccc}
0 & 1 & 0 \\
\frac{-b_{1} b_{2}}{M_{1} M_{2}} & 0 & {\left[\frac{b_{1}}{M_{1}}\left(\frac{b_{1}}{M_{1}}+\frac{b_{1}}{M_{2}}+\frac{b_{2}}{M_{2}}\right)-\frac{K_{1}}{M_{1}}\right]}
\end{array} \begin{array}{c}
\frac{-b_{1}}{M_{1}} \\
\frac{b_{2}}{M_{2}} \\
\frac{K_{2}}{M_{2}}
\end{array} 0 \begin{array}{cc}
-\left(\frac{b_{1}}{M_{1}}+\frac{b_{1}}{M_{2}}+\frac{b_{2}}{M_{2}}\right) & 1 \\
0 & -\left(\frac{K_{1}}{M_{1}}+\frac{K_{1}}{M_{2}}+\frac{R_{2}}{M_{2}}\right)
\end{array}\right]\left[\begin{array}{c}
X_{1} \\
\dot{X}_{1} \\
X_{2} \\
\dot{X}_{2}
\end{array}\right]+ \\
& {\left[\begin{array}{cc}
0 & 0 \\
\frac{1}{M_{1}} & \frac{b_{1} b_{2}}{M_{1} M_{2}} \\
0 & \frac{-b_{2}}{M_{2}} \\
\left(\frac{1}{M_{1}}+\frac{1}{M_{2}}\right) & \frac{-K_{2}}{M_{2}}
\end{array}\right]\left[\begin{array}{c}
U \\
W
\end{array}\right] } \\
& Y=\left[\begin{array}{llll}
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
X_{1} \\
\dot{X}_{1} \\
X_{2} \\
\dot{X}_{2}
\end{array}\right]+\left[\begin{array}{ll}
0 & 0
\end{array}\right]\left[\begin{array}{c}
U \\
W
\end{array}\right]
\end{aligned}
$$

$$
\left.\begin{array}{rl}
{\left[\begin{array}{c}
\dot{x_{1}} \\
\dot{x_{2}} \\
\dot{x_{3}} \\
\dot{x_{4}}
\end{array}\right]} & =\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-6.571 & 0 & -25.26 & -0.14 \\
46.94 & 0 & -48.17 & 1 \\
1563 & 0 & -1845 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]+\left[\begin{array}{cc}
0 & 0 \\
0.0004 & 6.571 \\
0 & -46.94 \\
0.003525 & -1563
\end{array}\right]\left[\begin{array}{c}
U \\
W
\end{array}\right] \\
Y & =\left[\begin{array}{lll}
0 & 0 & 1
\end{array} 0\right.
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]+\left[\begin{array}{ll}
0 & 0
\end{array}\right]\left[\begin{array}{c}
U \\
W
\end{array}\right] \quad \begin{gathered}
0.5 \\
x[0]
\end{gathered}
$$

v. Inverted Pendulum

System Parameters
A. $M=$ mass of cart $0.5[k g]$
B. $m=$ mass of the pendulum $0.2[\mathrm{~kg}]$
C. $b=$ coefficient of friction for cart $0.1[\mathrm{~N} / \mathrm{m} / \mathrm{s}]$
D. $l=$ length of pendulum center of mass $0.3[\mathrm{~m}]$
E. $I=$ mass moment of inertia of the pendulum $0.006\left[\mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$
F. $F=$ force applied to the cart
G. $x=$ cart position coordinate
H. $\theta=$ pendulum angle from vertical (down)
I. $\phi=\theta-\pi$

Equations of Motion (for small θ):

$$
\begin{gathered}
l\left(I+m l^{2}\right) \ddot{\phi}-m g l \phi=m l \ddot{x} \\
(M+m) \ddot{x}+b \dot{x}-m l \ddot{\phi}=u
\end{gathered}
$$

State-space:

$$
\begin{aligned}
{\left[\begin{array}{c}
\dot{x} \\
\ddot{x} \\
\dot{\phi} \\
\ddot{\phi}
\end{array}\right] } & =\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & \frac{-\left(I+m l^{2}\right) b}{I(M+m)+M m l^{2}} & 0 \\
0 & 0 & m^{2} g l^{2} \\
0 & \frac{-m l b}{I(M+m)+M m l^{2}} & 0 \\
I(M+m)+M m l^{2} & \frac{m g l(M+m)}{I(M+m)+M m l^{2}}
\end{array}\right]\left[\begin{array}{l}
x \\
\dot{x} \\
\phi \\
\dot{\phi}
\end{array}\right]+\left[\begin{array}{c}
0 \\
\frac{I+m l^{2}}{I(M+m)+M m l^{2}} \\
0 \\
\frac{m l}{T(M+m)+M m l^{2}}
\end{array}\right] u \\
\mathbf{y} & =\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
\dot{x} \\
\phi \\
\dot{\phi}
\end{array}\right]+\left[\begin{array}{l}
0 \\
0
\end{array}\right] u \\
{\left[\begin{array}{c}
\dot{x} \\
\ddot{x} \\
\dot{\phi} \\
\ddot{\phi}
\end{array}\right] } & =\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & -0.1818 & 2.6727 \\
0 & 0 & 0 \\
0 & -0.4545 & 31.1818 \\
0
\end{array}\right]\left[\begin{array}{l}
x \\
\dot{x} \\
\phi \\
\dot{\phi}
\end{array}\right]+\left[\begin{array}{c}
0 \\
1.8182 \\
0 \\
4.5455
\end{array}\right] u \\
y & =\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
\dot{x} \\
\phi \\
\dot{\phi}
\end{array}\right]+\left[\begin{array}{l}
0 \\
0
\end{array}\right] u \\
x[0] & =\left[\begin{array}{c}
-3 \\
2 \\
\frac{\pi}{8} \\
-\frac{\pi}{4}
\end{array}\right]
\end{aligned}
$$

vi. Aircraft Pitch

System Parameters

$$
\begin{array}{lc}
\alpha=\text { angle of attack } & q=\text { pitch rate } \\
\theta=\text { pitch angle } & \delta=\text { elevator deflection angle } \\
\mu=\frac{\rho S \bar{c}}{4 m} & \rho=\text { air density } \\
S=\text { area of wing } & \bar{c}=\text { mean chord length } \\
m=\text { aircraft mass } & \Omega=\frac{2 U}{\bar{c}} \\
U=\text { equilibrium flight of speed } & C_{T}=\text { Coefficient of Thrust } \\
C_{D}=\text { Coefficient of Drag } & C_{L}=\text { Coefficient of Lift } \\
C_{W}=\text { Coefficient of Weight } & C_{M}=\text { Coefficient of Pitch Moment } \\
\gamma=\text { Flight path angle } & \sigma=\frac{1}{1+\mu C_{L}}=\text { constant } \\
i_{y y}=\text { normalized moment of inertia } & \eta=\mu \sigma C_{M}=\text { constant }
\end{array}
$$

Equations of Motion:

$$
\begin{aligned}
\dot{\alpha} & =\mu \Omega \sigma\left[-\left(C_{L}+C_{D}\right) \alpha+\frac{1}{\left(\mu-C_{L}\right)} q-\left(C_{W} \sin \gamma\right) \theta+C_{L}\right] \\
\dot{q} & =\frac{\mu \Omega}{2 i_{y y}}\left[\left[C_{M}-\eta\left(C_{L}+C_{D}\right)\right] \alpha+\left[C_{M}+\sigma C_{M}\left(1-\mu C_{L}\right)\right] q+\left(\eta C_{W} \sin \gamma\right) \delta\right] \\
\dot{\theta} & =\Omega q
\end{aligned}
$$

State-space:

$$
\begin{aligned}
{\left[\begin{array}{c}
\dot{\alpha} \\
\dot{q} \\
\dot{\theta}
\end{array}\right] } & =\left[\begin{array}{ccc}
-0.313 & 56.7 & 0 \\
-0.0139 & -0.426 & 0 \\
0 & 56.7 & 0
\end{array}\right]\left[\begin{array}{l}
\alpha \\
q \\
\theta
\end{array}\right]+\left[\begin{array}{c}
0.232 \\
0.0203 \\
0
\end{array}\right][\delta] \\
y & =\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\alpha \\
q \\
\theta
\end{array}\right] \\
x[0] & =\left[\begin{array}{c}
\frac{\pi}{16} \\
-\frac{\pi}{8} \\
\frac{\pi}{12}
\end{array}\right]
\end{aligned}
$$

