
AE 513 - Multivariable Control - Autumn 2019

Homework 3

Due Date: Thursday, Oct 24th, 2019 at 11:59pm

1. Symmetric Matrices and Hessians

Let Q ∈ Rn×n be symmetric, Q = Q⊺, with distinct eigenvalues λi ̸= λj .

(a) (PTS: 0-2) Show the eigenvectors are orthogonal.
Hint: for vi, vj look at quantity v⊺i Qvj .

(b) (PTS: 0-2) Show that if x⊺Qx > 0 for all x ∈ Rn, then λi > 0 for all i.
(c) (PTS: 0-2) Show that if λi > 0 for each eigenvalue, then x⊺Qx > 0 for all x ∈ Rn

(d) (PTS: 0-2) Assume A is not symmetric. Let f(x) = x⊺Ax, show that ∂2f
∂x2 is symmetric.

(e) (PTS: 0-2) Assume function f(x) and f : Rn → R, show that ∂2f
∂x2 =

[
∂2f
∂x2

]⊺
2. Least Squares and Minimum Norm Solutions

(a) (PTS: 0-2) Consider A ∈ Rm×n where m > n (A is ”tall”) and A has full-column rank (the
columns are linear independent). Show that the least squares solution x = (A⊺A)−1A⊺y,
minimizes |y −Ax|2, ie. makes Ax as close as possible to y.

(b) (PTS: 0-2) Consider A ∈ Rm×n where m < n (A is ”fat”) and A has full-row rank (the rows
are linear independent). Let x = A⊺(AA⊺)−1y and z ∈ Rn be any vector such that y = Az.
Show that |x| ≤ |z|.

3. Controllability/Observability and Eigenvectors

Consider the dynamical system

ẋ = Ax+Bu

y = Cx

where A ∈ Rn×n, B ∈ Rn×1, C ∈ R1×n and A is diagonalizable with right and left eigenvectors
the columns and rows of P and Q respectively

P =

 | |
p1 . . . pn
| |

 , Q = P−1 =

− qT1 −
...

− qTn −

 (1)

(a) (PTS: 0-2) Suppose there exists a left eigenvector of A, qTi ∈ R1×n such that qTi B = 0.
Show that the system is not controllable.

(b) (PTS: 0-2) Now suppose qTi B ̸= 0 for all i, but the first two eigenvalues are the same. Show
that the system is not controllable.



(c) (PTS: 0-2) Suppose there exists a right eigenvector of A, p ∈ Rn such that Cp = 0. Show
that the system is not observable.

(d) (PTS: 0-2) Now suppose that Cpi ̸= 0 but the first two eigenvalues of the system are the
same. Show that the system is not observable.

4. Linearizing a System

Given the inverted pendulum model below.

(M +m)ẍ+ bẋ+mlθ̈ cos θ −mlθ̇2 sin θ = F

(I +ml2)θ̈ +mgl sin θ = −mlẍ cos θ

Linearize the equation of motion around the equilibrium point at
x

ẋ

ϕ

ϕ̇

 =


0

0

0

0


where the assumptions are given as follow:

θ = π + ϕ

θ̇2 = ϕ̇2 = 0

small angle approximation for ϕ

5. Controllability/Observability of Physical Systems

For each of the physical systems given, assess each of the following questions.

(a) (PTS: 0-2) Determine whether or not the system is stable or unstable.
(b) (PTS: 0-2) Compute the eigenvectors of the system.
(c) (PTS: 0-2) Give a qualitative physical interpretation of each of the eigenvectors in terms of

the system states, which physical states are couple together and how.



(d) (PTS: 0-2) Is the system controllable or not?
(e) (PTS: 0-2) Is the system observable or not?
(f) (PTS: 0-2) From the continuous time dynamics given, compute the discrete time system

matrices Ā, B̄ for time step of ∆t = 0.01 seconds.

Ā = eA∆t, B̄ =

∫ ∆t

0
eA(∆t−τ)B dτ

(g) (PTS: 0-2) If the system is controllable, compute the minimum norm open loop controller
to drive the system to 0 in 200 time steps (using the discrete time system) for the initial
state given .

(h) (PTS: 0-2) (If the system is controllable) Plot the minimum norm control signal over time
and the corresponding state trajectories.

i.
Cruise Control

ii.
System Parameters
A. m = vehicle mass 1000 kg
B. b = damping 50 N.s/m
Equations of Motion:

mv̇ + bv = u

y = v

State-space:

[v̇] =

[
−b

m

]
[v] +

[
1

m

]
[u]

y = [1][v]

[v̇] =
[
−0.05

] [
v
]
+
[
0.001

] [
u
]

y =
[
1
] [

v
]

x[0] = 10



iii. DC Motor Position

System Parameters
A. J = moment of inertia of the rotor 3.2284e−6 [kg ·m2 ]
B. b = motor viscous friction constant 3.5077e−6 [N ·m · s]
C. Ke = electromotive force constant 0.0274 [V/rad/s]
D. Kt = motor torque constant 0.0274 [N ·m/Amp]
E. R = electric resistance 4.0 [Ohm]
F. L = electric inductance 2.75e−6 [H]
Equations of Motion:

T = Kti

e = Keθ̇

J θ̈ + bθ̇ = Ki

L
di

dt
+Ri = V −Kθ̇

State-space:

d

dt

θθ̇
i

 =

0 1 0

0 − b
J

K
J

0 −K
L −R

L


θθ̇
i

+

0

0
1
L

V

y =
[
1 0 0

]θθ̇
i


θ̇θ̈
i̇

 =

0 1 0

0 −1.087 8487

0 −9964 −1.455e6


θθ̇
i

+

 0

3.636e5

V

y =
[
1 0 0

]θθ̇
i


x[0] =

 π
2

−π
8

2





iv. Suspension

System Parameters
A. M1 = 1/4 bus body mass 2500 [kg]
B. M2 = suspension mass 320 [kg]
C. K1 = spring constant of suspension system 80, 000 [N/m]
D. K2 = spring constant of wheel and tire 500, 000 [N/m]
E. b1 = damping constant of suspension system 350 [N · s/m]
F. b2 = damping constant of wheel and tire 15, 020 [N · · · /m]
G. U = control force
Equations of Motion:

M1Ẍ1 = −b1

(
Ẋ1 − Ẋ2

)
−K1 (X1 −X2) + U

M2Ẍ2 = b1

(
Ẋ1 − Ẋ2

)
+K1 (X1 −X2) + b2

(
Ẇ − Ẋ2

)
+K2 (W −X2)− U

State-space:


Ẋ1

Ẍ1

Ẋ2

Ẍ2

 =


0 1 0 0

−b1b2
M1M2

0
[

b1
M1

(
b1
M1

+ b1
M2

+ b2
M2

)
− K1

M1

]
−b1
M1

b2
M2

0 −
(

b1
M1

+ b1
M2

+ b2
M2

)
1

K2
M2

0 −
(

K1
M1

+ K1
M2

+ R2
M2

)
0




X1

Ẋ1

X2

Ẋ2

+


0 0
1

M1

b1b2
M1M2

0 −b2
M2(

1
M1

+ 1
M2

)
−K2
M2


[

U

W

]

Y =
[
0 0 1 0

]
X1

Ẋ1

X2

Ẋ2

+
[
0 0

] [ U

W

]




ẋ1
ẋ2
ẋ3
ẋ4

 =


0 1 0 0

−6.571 0 −25.26 −0.14

46.94 0 −48.17 1

1563 0 −1845 0



x1
x2
x3
x4

+


0 0

0.0004 6.571

0 −46.94

0.003525 −1563


[
U

W

]

Y =
[
0 0 1 0

]
x1
x2
x3
x4

+
[
0 0

] [U
W

]

x[0] =


0.5

2

−0.5

−3


v. Inverted Pendulum

System Parameters
A. M = mass of cart 0.5 [kg]
B. m = mass of the pendulum 0.2 [kg]
C. b = coefficient of friction for cart 0.1 [N/m/s]
D. l = length of pendulum center of mass 0.3 [m]
E. I = mass moment of inertia of the pendulum 0.006 [kg ·m2]
F. F = force applied to the cart
G. x = cart position coordinate
H. θ = pendulum angle from vertical (down)
I. ϕ = θ − π

Equations of Motion (for small θ):

l
(
I +ml2

)
ϕ̈−mglϕ = mlẍ

(M +m)ẍ+ bẋ−mlϕ̈ = u



State-space:
ẋ

ẍ

ϕ̇

ϕ̈

 =


0 1 0 0

0 −(I+ml2)b
I(M+m)+Mml2

m2gl2

I(M+m)+Mml2
0

0 0 0

0 −mlb
I(M+m)+Mml2

mgl(M+m)
I(M+m)+Mml2




x

ẋ

ϕ

ϕ̇

+


0

I+ml2

I(M+m)+Mml2

0
ml

T (M+m)+Mml2

u

y =

[
1 0 0 0

0 0 1 0

]
x

ẋ

ϕ

ϕ̇

+

[
0

0

]
u


ẋ

ẍ

ϕ̇

ϕ̈

 =


0 1 0 0

0 −0.1818 2.6727 0

0 0 0 1

0 −0.4545 31.1818 0



x

ẋ

ϕ

ϕ̇

+


0

1.8182

0

4.5455

u

y =

[
1 0 0 0

0 0 1 0

]
x

ẋ

ϕ

ϕ̇

+

[
0

0

]
u

x[0] =


−3

2
π
8

−π
4


vi. Aircraft Pitch

System Parameters
α = angle of attack q = pitch rate
θ = pitch angle δ = elevator deflection angle
µ = ρSc̄

4m ρ = air density
S = area of wing c̄ = mean chord length
m = aircraft mass Ω = 2U

c̄

U = equilibrium flight of speed CT = Coefficient of Thrust
CD = Coefficient of Drag CL = Coefficient of Lift
CW = Coefficient of Weight CM = Coefficient of Pitch Moment
γ = Flight path angle σ = 1

1+µCL
= constant

iyy = normalized moment of inertia η = µσCM = constant



Equations of Motion:

α̇ = µΩσ

[
− (CL + CD)α+

1

(µ− CL)
q − (CW sin γ) θ + CL

]
q̇ =

µΩ

2iyy
[[CM − η (CL + CD)]α+ [CM + σCM (1− µCL)] q + (ηCW sin γ) δ]

θ̇ = Ωq

State-space:  α̇

q̇

θ̇

 =

 −0.313 56.7 0

−0.0139 −0.426 0

0 56.7 0


 α

q

θ

+

 0.232

0.0203

0

 [δ]

y =
[
0 0 1

] α

q

θ


x[0] =

 π
16

−π
8

π
12




