
AE 513 - Multivariable Control - Autumn 2019

Homework 4

Due Date: Friday, Nov 1st, 2019 at 11:59pm
Consider a system of the form

ẋ = Ax+Bu

y = Cx

with A ∈ Rn×n, B ∈ Rn×m and C ∈ Ro×n. (PTS: 0-2) Write out the dynamics for an estimator state
x̂ with an observer gain of L ∈ Rn×o and then (PTS: 0-2) write out the combined dynamics for the
true state x and estimated state x̂ when a control input of u = ū +Kx̂ is applied with feedback gain
K ∈ Rm×n. (You can write the full dynamics in terms of the error in the estimate e = x̂ − x if you
prefer.) For each of the systems listed below perform the following steps. Feel free to use MATLAB or
Python.

1. Feedback Control: Gain Design
Design the feedback gain K ∈ Rm×n to stabilize the system matrix.

For single input systems:

(a) (PTS: 0-2) Compute the characteristic polynomial of A.

det(λI −A) = λn + αn−1λ
n−1 + · · ·+ α1λ+ α0

Select (distinct) desired eigenvalues λ1, . . . , λn for the closed loop system A+BK so that the
closed loop system will be stable. Compute the desired characteristic polynomial for A+BK

using the formula

det(λI − (A+BK)) = Πi(λ− λi) = λn + βn−1λ
n−1 + · · ·+ β1λ+ β0

(b) (PTS: 0-2) If the system is controllable, compute a coordinate transformation x = Tz such
that the system in the z coordinates is in controllable canonical form

ż = Āz + B̄u

where

Ā =


−αn−1 −αn−2 · · · α1 −α0

1 0 · · · 0 0

0 1 · · · 0 0
...

...
0 0 1 0

 , B̄ =


1

0

0
...
0





Use the fact that if T exists, then the controllability matrix in the two different coordinates
are related by [

Ān−1B̄ · · · ĀB̄ B̄
]
= T−1

[
An−1B · · · AB B

]
(1)

(Double check that Ā = T−1AT and B̄ = T−1B).
(c) (PTS: 0-2) Compute the gain matrix K̄ such that Ā + B̄K̄ has the desired characterisitic

polynomial. λn + βn−1λ
n−1 + · · ·+ β1λ+ β0.

(d) (PTS: 0-2) Compute the feedback gain matrix K so that the closed loop system matrix
A+BK has the desired characteristic polynomial using K̄ and T .

For multi-input systems:

(PTS: 0-2) Instead of the above steps, use the place command in MATLAB (or Python) to
design the feedback gain matrix K.

2. Feedback Control: Conditioning of Closed-Loop Eigenvectors

(a) (PTS: 0-2) Compute the right eigenvectors of the closed loop matrix A + BK and place
them in the columns of a matrix X. Consider the closed-loop system transformed into the
eigenvector coordinates x = Xz.

ẋ = (A+BK)x

⇒ ż =

λ1 · · · 0
... . . . ...
0 · · · λn

 z

(b) (PTS: 0-2) For an initial condition x(0), note that the initial condition in the eigenvector
coordinates is given by z(0) = X−1x(0). Also note that the magnitude of z(0) is given by

|z(0)| =
√
x(0)∗(X−1)∗X−1x(0)

. where ∗ is the conjugate tranpose (performs the regular transpose as well as conjugates any
complex numbers, ie. negates the imaginary parts).
Compute the minimum and maximum eigenvalues of M = (X−1)∗X−1, λmin(M) and λmax(M)

and their corresponding eigenvectors xmin and xmax. Be sure to normalize xmin and xmax

to have the same magnitude. Note that xmin and xmax correspond to the initial condition
directions that have the minimum and maximum magnitudes in the eigenvector coordinates.

(c) (PTS: 0-2) Note that the singular values of X−1, usually denoted σ1, . . . , σn are the square
roots of the eigenvalues of M . Compute the condition number of X−1

κ(X−1) = σmax(X−1)
σmin(X−1)

=

√
λmax(M)√
λmin(M)

Assuming that xmax and xmin are both normalized to have the same length, how does the
condition number relate to the ratio |X−1xmax|

|X−1xmin| ?



3. Observer: Gain Design

Repeat the steps from Part 1, to design the observer gain L ∈ Rn×o. Use the same technique
you used to design K, only considering the closed-loop matrix AT + CTLT . (For single output
systems, compute the transformation explicitly using the controllable canonical form method; for
multi-output systems use the place command.) Note that you should choose eigenvalues for the
observer that converge significantly faster than the eigenvalues you chose for the controller gain
so that the state estimate converges faster than the true state.

4. Observer: Conditioning of Closed-Loop Eigenvectors

Consider the closed loop error dynamics

ė = (A+ LC)e

Repeat the steps from Part 2 to compute the eigenvectors of A+LC and find the initial error con-
ditions emax and emin that have the maximum and minimum norms in the eigenvector coordinates
of A+ LC.

5. Simulations

Simulate the closed-loop dynamics of either [x, x̂]T (or [x, e]T ) in the following scenarios. You
can use either ode45 or transform the system into discrete time. For each case, plot the state,
estimated state, and control trajectories.

(a) (PTS: 0-2) Set ū = 0 and initialize the state x(0) = xmax and x̂(0) = xmax + emax.
(b) (PTS: 0-2) Set ū = 0 and initialize the state x(0) = xmin and x̂(0) = xmin+emin. Make sure

that xmax and xmin are normalized to have the same length and make sure that emax and
emin have the same length. (PTS: 0-2) Compare the results with the previous simulation
and discuss.

(c) (PTS: 0-2) Set ū = γ1 sin(ω1t) for single input systems and ū = [γ1 sin(ω1t), γ2 sin(ω2t)] for
multi-input systems and initialize x(0) = 0, x̂(0) = x(0) + emax. (PTS: 0-2) Experiment
with different amplitudes γ1, γ2 and different frequencies ω1, ω2 and discuss.

Systems

1.

Cruise Control

2.

System Parameters

(a) m = vehicle mass 1000 kg



(b) b = damping 50 N.s/m

Equations of Motion:

mv̇ + bv = u

y = v

State-space:

[v̇] =

[
−b

m

]
[v] +

[
1

m

]
[u]

y = [1][v]

[v̇] =
[
−0.05

] [
v
]
+
[
0.001

] [
u
]

y =
[
1
] [

v
]

x[0] = 10

3. DC Motor Position

System Parameters

(a) J = moment of inertia of the rotor 3.2284e−6 [kg ·m2 ]

(b) b = motor viscous friction constant 3.5077e−6 [N ·m · s]

(c) Ke = electromotive force constant 0.0274 [V/rad/s]

(d) Kt = motor torque constant 0.0274 [N ·m/Amp]

(e) R = electric resistance 4.0 [Ohm]

(f) L = electric inductance 2.75e−6 [H]



Equations of Motion:

T = Kti

e = Keθ̇

J θ̈ + bθ̇ = Ki

L
di

dt
+Ri = V −Kθ̇

State-space:

d

dt

θθ̇
i

 =

0 1 0

0 − b
J

K
J

0 −K
L −R

L


θθ̇
i

+

0

0
1
L

V

y =
[
1 0 0

]θθ̇
i


θ̇θ̈
i̇

 =

0 1 0

0 −1.087 8487

0 −9964 −1.455e6


θθ̇
i

+

 0

3.636e5

V

y =
[
1 0 0

]θθ̇
i


x[0] =

 π
2

−π
8

2


4. Suspension

System Parameters

(a) M1 = 1/4 bus body mass 2500 [kg]

(b) M2 = suspension mass 320 [kg]



(c) K1 = spring constant of suspension system 80, 000 [N/m]

(d) K2 = spring constant of wheel and tire 500, 000 [N/m]

(e) b1 = damping constant of suspension system 350 [N · s/m]

(f) b2 = damping constant of wheel and tire 15, 020 [N · · · /m]

(g) U = control force

Equations of Motion:

M1Ẍ1 = −b1

(
Ẋ1 − Ẋ2

)
−K1 (X1 −X2) + U

M2Ẍ2 = b1

(
Ẋ1 − Ẋ2

)
+K1 (X1 −X2) + b2

(
Ẇ − Ẋ2

)
+K2 (W −X2)− U

State-space:


Ẋ1

Ẍ1

Ẋ2

Ẍ2

 =


0 1 0 0

−b1b2
M1M2

0
[

b1
M1

(
b1
M1

+ b1
M2

+ b2
M2

)
− K1

M1

]
−b1
M1

b2
M2

0 −
(

b1
M1

+ b1
M2

+ b2
M2

)
1

K2
M2

0 −
(

K1
M1

+ K1
M2

+ R2
M2

)
0




X1

Ẋ1

X2

Ẋ2

+


0 0
1

M1

b1b2
M1M2

0 −b2
M2(

1
M1

+ 1
M2

)
−K2
M2


[

U

W

]

Y =
[
0 0 1 0

]
X1

Ẋ1

X2

Ẋ2

+
[
0 0

] [ U

W

]


ẋ1
ẋ2
ẋ3
ẋ4

 =


0 1 0 0

−6.571 0 −25.26 −0.14

46.94 0 −48.17 1

1563 0 −1845 0



x1
x2
x3
x4

+


0 0

0.0004 6.571

0 −46.94

0.003525 −1563


[
U

W

]

Y =
[
0 0 1 0

]
x1
x2
x3
x4

+
[
0 0

] [U
W

]

x[0] =


0.5

2

−0.5

−3





5. Inverted Pendulum

System Parameters

(a) M = mass of cart 0.5 [kg]

(b) m = mass of the pendulum 0.2 [kg]

(c) b = coefficient of friction for cart 0.1 [N/m/s]

(d) l = length of pendulum center of mass 0.3 [m]

(e) I = mass moment of inertia of the pendulum 0.006 [kg ·m2]

(f) F = force applied to the cart

(g) x = cart position coordinate

(h) θ = pendulum angle from vertical (down)

(i) ϕ = θ − π

Equations of Motion (for small θ):

l
(
I +ml2

)
ϕ̈−mglϕ = mlẍ

(M +m)ẍ+ bẋ−mlϕ̈ = u



State-space:
ẋ

ẍ

ϕ̇

ϕ̈

 =


0 1 0 0

0 −(I+ml2)b
I(M+m)+Mml2

m2gl2

I(M+m)+Mml2
0

0 0 0

0 −mlb
I(M+m)+Mml2

mgl(M+m)
I(M+m)+Mml2




x

ẋ

ϕ

ϕ̇

+


0

I+ml2

I(M+m)+Mml2

0
ml

T (M+m)+Mml2

u

y =

[
1 0 0 0

0 0 1 0

]
x

ẋ

ϕ

ϕ̇

+

[
0

0

]
u


ẋ

ẍ

ϕ̇

ϕ̈

 =


0 1 0 0

0 −0.1818 2.6727 0

0 0 0 1

0 −0.4545 31.1818 0



x

ẋ

ϕ

ϕ̇

+


0

1.8182

0

4.5455

u

y =

[
1 0 0 0

0 0 1 0

]
x

ẋ

ϕ

ϕ̇

+

[
0

0

]
u

x[0] =


−3

2
π
8

−π
4


6. Aircraft Pitch

System Parameters

α = angle of attack q = pitch rate
θ = pitch angle δ = elevator deflection angle
µ = ρSc̄

4m ρ = air density
S = area of wing c̄ = mean chord length
m = aircraft mass Ω = 2U

c̄

U = equilibrium flight of speed CT = Coefficient of Thrust
CD = Coefficient of Drag CL = Coefficient of Lift
CW = Coefficient of Weight CM = Coefficient of Pitch Moment
γ = Flight path angle σ = 1

1+µCL
= constant

iyy = normalized moment of inertia η = µσCM = constant



Equations of Motion:

α̇ = µΩσ

[
− (CL + CD)α+

1

(µ− CL)
q − (CW sin γ) θ + CL

]
q̇ =

µΩ

2iyy
[[CM − η (CL + CD)]α+ [CM + σCM (1− µCL)] q + (ηCW sin γ) δ]

θ̇ = Ωq

State-space:  α̇

q̇

θ̇

 =

 −0.313 56.7 0

−0.0139 −0.426 0

0 56.7 0


 α

q

θ

+

 0.232

0.0203

0

 [δ]

y =
[
0 0 1

] α

q

θ


x[0] =

 π
16

−π
8

π
12




