AE 513-Multivariable Control - Autumn 2019

Homework 5

Due Date: Friday, Nov $8^{s t}$, 2019 at 11:59pm

1. Lagrange Multipliers Use the method of Lagrange multipliers to solve the following optimization problems.
(a) (PTS: 0-2)

$$
\begin{aligned}
\min _{x_{1}, x_{2}} & x_{1}^{2}+2 x_{2}^{2} \\
\text { s.t. } & x_{1}+x_{2}=1
\end{aligned}
$$

(b) (PTS: 0-2)

$$
\begin{aligned}
\min _{x \in R^{3}} & x^{\top} Q x+c^{\top} x \\
\text { s.t. } & A x=b ;
\end{aligned}
$$

with

$$
Q=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right], \quad c=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right], \quad A=\left[\begin{array}{ccc}
1 & 2 & -1 \\
1 & 1 & 0
\end{array}\right], \quad b=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

2. Dynamic Programming

(a) Finite horizon example:
(PTS: 0-2) Compute the minimal cost from layer $t=0$ to layer $t=3$ for each node by computing the optimal cost-to-go or value at each node.

(b) Fixed point example:
(PTS: 0-2) Consider the graph below. Initialize the cost-to-go or value at each node at infinity (or some large number). Iterate over each node using the Bellman equation to update the value to reflect the minimum cost-to-go to the destination. (During each update, you should assume that the values at the other nodes accurately reflect the cost-to-go to the destination.) Repeat this process until the value at each node converges.

3. Finite Horizon LQR Extensions

Consider the following extension of the LQR problem in the continuous time case

$$
\begin{array}{cl}
\min _{u(t)} & \int_{0}^{T}(x-\bar{x})^{\top} Q(t)(x-\bar{x})+2(x-\bar{x})^{\top} N(t)(u-\bar{u})+(u-\bar{u})^{\top} R(t)(u-\bar{u}) d t+ \\
& (x(T)-\bar{x}(T))^{\top} Q(T)(x(T)-\bar{x}(T)) \\
\text { s.t. } & \dot{x}=A(t) x+B(t) u, \quad x(0)=x_{0} \tag{2}
\end{array}
$$

The time dependence on x and u are assumed. $\bar{u}(t)$ and $\bar{x}(t)$ are desired control and state trajectories respectively, and $A \in R^{n \times n} B \in R^{n \times m}, Q \in R^{n \times n}, N \in R^{n \times m}$ and $R \in R^{m \times m}$. The equivalent discrete time problem is given by

$$
\begin{array}{ll}
\min _{u(t)} & \sum_{t=0}^{T-1}(x-\bar{x})^{\top} Q[t](x-\bar{x})+2(x-\bar{x})^{\top} N[t](u-\bar{u})+(u-\bar{u})^{\top} R[t](u-\bar{u}) d t+ \\
& (x[T]-\bar{x}[T])^{\top} Q[T](x[T]-\bar{x}(T)) \\
\text { s.t. } & x[t+1]=A[t] x[t]+B[t] u[t], \quad x[0]=x_{0} \tag{4}
\end{array}
$$

(a) In the discrete time case:
i. (PTS: 0-2) Show that the cost-to-go from time t has the form $(x-\bar{x})^{\top} P[t](x-\bar{x})$ and derive the Riccati update equation to solve for $P[t]$.
ii. (PTS: 0-2) Derive the form of the optimal feedback control law.
(b) In the continuous time case:
i. (PTS: 0-2) Show that the cost-to-go from time t has the form $(x-\bar{x})^{\top} P(t)(x-\bar{x})$ and derive the Riccati differential equation to solve for $P(t)$.
ii. (PTS: 0-2) Derive the form of the optimal feedback control law.

4. Infinite Horizon LQR

The infinite horizon continuous time $L Q R$ problem is given by

$$
\begin{align*}
\min _{u(t)} & \int_{0}^{\infty} x^{\top} Q x+u^{\top} R u d t \tag{5}\\
\text { s.t. } & \dot{x}=A x+B u, \quad x(0)=x_{0} \tag{6}
\end{align*}
$$

For a long time horizon, the cost-to-go matrix P converges, ie. \dot{P} goes to 0 and can be found by solving the algebraic Riccati equation

$$
0=A^{\top} P+P A+Q-P B R^{-1} B^{\top} P
$$

with optimal gains given by

$$
K=-R^{-1} B^{\top} P
$$

Let $x \in R^{3}$ and

$$
A=\left[\begin{array}{ccc}
1 & 2 & 3 \\
2 & -1 & -1 \\
2 & 2 & 1
\end{array}\right], \quad B=\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right],
$$

Select $Q=Q^{\top} \geq 0$ and $R=R^{\top}>0$.
(PTS: 0-2) Solve the Riccati differential equation

$$
-\dot{P}=A^{\top} P+P A+Q-P B R^{-1} B^{\top} P
$$

from the terminal condition $P(T)=Q$.
(PTS: 0-2) Demonstrate that as P progresses backwards in time it converges to the solution to the algebraic Riccati equation. (You can solve the algebraic Riccati equation using the lqr function in MATLAB.)

5. LQR Design

For the two systems given below perform the following steps. You can use either discrete or continuous time.
(a) (PTS: 0-2) Set $Q=C^{\boldsymbol{\top}} C$ and pick R. Compute an infinite horizon LQR controller.
(b) (PTS: 0-2) Compute a finite horizon LQR controller.
(c) (PTS: 0-2) Simulate the system from several initial conditions for the two different controllers and compare.
(d) (PTS: 0-2) For the infinite horizon controller, modify Q to penalize different states. Try several cases. Recompute the optimal controller in each case. (You can use the lqr command.) Simulate the trajectories and compare them.

Systems

1. Inverted Pendulum

System Parameters
(a) $M=$ mass of cart $0.5[\mathrm{~kg}]$
(b) $m=$ mass of the pendulum $0.2[\mathrm{~kg}]$
(c) $b=$ coefficient of friction for cart $0.1[\mathrm{~N} / \mathrm{m} / \mathrm{s}]$
(d) $l=$ length of pendulum center of mass $0.3[m]$
(e) $I=$ mass moment of inertia of the pendulum $0.006\left[\mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$
(f) $F=$ force applied to the cart
(g) $x=$ cart position coordinate
(h) $\theta=$ pendulum angle from vertical (down)
(i) $\phi=\theta-\pi$

Equations of Motion (for small θ):

$$
\begin{gathered}
l\left(I+m l^{2}\right) \ddot{\phi}-m g l \phi=m l \ddot{x} \\
(M+m) \ddot{x}+b \dot{x}-m l \ddot{\phi}=u
\end{gathered}
$$

State-space:

$$
\begin{aligned}
{\left[\begin{array}{c}
\dot{x} \\
\ddot{x} \\
\dot{\phi} \\
\ddot{\phi}
\end{array}\right] } & =\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & \frac{-\left(I+m l^{2}\right) b}{I(M+m)+M m l^{2}} & 0 \\
0 & 0 & m^{2} g l^{2} \\
0 & \frac{-m l b}{I(M+m)+M m l^{2}} & 0 \\
0 & 0 \\
I(M+m)+M m l^{2} & \frac{m g l(M+m)}{I(M+m)+M m l^{2}}
\end{array}\right]\left[\begin{array}{l}
x \\
\dot{x} \\
\phi \\
\dot{\phi}
\end{array}\right]+\left[\begin{array}{c}
0 \\
\frac{I+m l^{2}}{I(M+m)+M m l^{2}} \\
0 \\
\frac{m l}{T(M+m)+M m l^{2}}
\end{array}\right] u \\
\mathbf{y} & =\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
\dot{x} \\
\phi \\
\dot{\phi}
\end{array}\right]+\left[\begin{array}{l}
0 \\
0
\end{array}\right] u \\
{\left[\begin{array}{l}
\dot{x} \\
\ddot{x} \\
\dot{\phi} \\
\ddot{\phi}
\end{array}\right] } & =\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & -0.1818 & 2.6727 & 0 \\
0 & 0 & 0 & 1 \\
0 & -0.4545 & 31.1818 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
\dot{x} \\
\phi \\
\dot{\phi}
\end{array}\right]+\left[\begin{array}{c}
0 \\
1.8182 \\
0 \\
4.5455
\end{array}\right] u \\
y & =\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
\dot{x} \\
\phi \\
\dot{\phi}
\end{array}\right]+\left[\begin{array}{l}
0 \\
0
\end{array}\right] u
\end{aligned}
$$

2. Aircraft Pitch

System Parameters

$$
\begin{array}{lc}
\alpha=\text { angle of attack } & q=\text { pitch rate } \\
\theta=\text { pitch angle } & \delta=\text { elevator deflection angle } \\
\mu=\frac{\rho S \bar{c}}{4 m} & \rho=\text { air density } \\
S=\text { area of wing } & \bar{c}=\text { mean chord length } \\
m=\text { aircraft mass } & \Omega=\frac{2 U}{\bar{c}} \\
U=\text { equilibrium flight of speed } & C_{T}=\text { Coefficient of Thrust } \\
C_{D}=\text { Coefficient of Drag } & C_{L}=\text { Coefficient of Lift } \\
C_{W}=\text { Coefficient of Weight } & C_{M}=\text { Coefficient of Pitch Moment } \\
\gamma=\text { Flight path angle } & \sigma=\frac{1}{1+\mu C_{L}}=\text { constant } \\
i_{y y}=\text { normalized moment of inertia } & \eta=\mu \sigma C_{M}=\text { constant }
\end{array}
$$

Equations of Motion:

$$
\begin{aligned}
\dot{\alpha} & =\mu \Omega \sigma\left[-\left(C_{L}+C_{D}\right) \alpha+\frac{1}{\left(\mu-C_{L}\right)} q-\left(C_{W} \sin \gamma\right) \theta+C_{L}\right] \\
\dot{q} & =\frac{\mu \Omega}{2 i_{y y}}\left[\left[C_{M}-\eta\left(C_{L}+C_{D}\right)\right] \alpha+\left[C_{M}+\sigma C_{M}\left(1-\mu C_{L}\right)\right] q+\left(\eta C_{W} \sin \gamma\right) \delta\right] \\
\dot{\theta} & =\Omega q
\end{aligned}
$$

State-space:

$$
\begin{aligned}
{\left[\begin{array}{c}
\dot{\alpha} \\
\dot{q} \\
\dot{\theta}
\end{array}\right] } & =\left[\begin{array}{ccc}
-0.313 & 56.7 & 0 \\
-0.0139 & -0.426 & 0 \\
0 & 56.7 & 0
\end{array}\right]\left[\begin{array}{l}
\alpha \\
q \\
\theta
\end{array}\right]+\left[\begin{array}{c}
0.232 \\
0.0203 \\
0
\end{array}\right][\delta] \\
y & =\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\alpha \\
q \\
\theta
\end{array}\right]
\end{aligned}
$$

