
AE 513 - Multivariable Control - Autumn 2019

Homework 6

Due Date: Thurs, Nov 14th, 2019 at 11:59pm

1. Laplace Transform
The Laplace transform of a function f(t) is given by

L(f)(s) =
∫ ∞

0
f(t)e−st dt

Choose three of the following Laplace Transforms to compute:

(a) (PTS: 0-2) Delta function: L (δ(t)) =?

(b) (PTS: 0-2) Differentiation: L
(
ḟ(t)

)
=?

(c) (PTS: 0-2) Integration: L
(∫ t

0 f(τ) dτ
)
=?

(d) (PTS: 0-2) Frequency Shift: L
(
eatf(t)

)
=?

(e) (PTS: 0-2) Convolution: L
(∫ t

0 g(t− τ)f(τ) dτ
)
=?

2. Transfer Functions
Consider the continuous time linear system

ẋ = Ax+Bu, x(0) = x0

y = Cx+Du

(PTS: 0-2) Compute the Laplace transform of the output y(t), ie. L(y(t)) = Y (s). Your solution
should be in terms of the A,B,C,D, x0, U(s), where U(s) is the Laplace transform of u(t).

3. Matrix Identities
The Woodbury matrix identity is given by

(A+ UCV )−1 = A−1 −A−1U
(
C−1 + V A−1U

)−1
V A−1

A ∈ Rn×n invertible, C ∈ Rm×m invertible, U ∈ Rn×m, V ∈ Rm×n.
Side Note: If m < n, ie. C is smaller than A, this formula provides a way to update the inverse
of a matrix A that has a low rank matrix UCV added to it without having to computing the full
n × n inverse, (A + UCV )−1. Assuming we already know A−1, we can compute (A + UCV )−1

simply by computing C−1 and then (C−1 + V A−1U)−1. If m ≪ n, for example if C ∈ R1×1, this
operation is much cheaper computationally.

(a) For an invertible matrix M , show that

(I +M)−1 = I − (I +M)−1M



(b) For an invertible matrix M , show that

M(I +M)−1 = (I +M)−1M

4. Sensitivity Functions
Consider the block diagram
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where

(a) G(s) is the plant transfer function.
(b) K(s) is the plant transfer function.
(c) U(s) is the control signal.
(d) R(S) is the reference signal.
(e) Y (S) is the output signal.
(f) D(S) is the disturbance.
(g) E(S) is the error between the output and reference

Show that

(PTS: 0-2) Y (s) = S(s)D(s) + T (s)
(
R(s)−N(s)

)
(1)

(PTS: 0-2) E(s) = S(s)
(
R(s)−D(s)

)
+ T (s)N(s) (2)

where

S(s) =
(
I +G(s)K(s)

)−1
Sensitivity

T (s) = G(s)K(s)
(
I +G(s)K(s)

)−1
Complementary Sensitivity

Note: use the matrix identities from the previous problem.

(a) (PTS: 0-2) What is the effect of large S(s) on the output Y (s) and the error E(s)?
(b) (PTS: 0-2) What is the effect of large T (s) on the output Y (s) and the error E(s)?

5. Kalman Filter and LQG Controller
Consider the dynamics of the form

ẋ = Ax+Bu+ w, w ∼ N (0,W )

y = Cx+ v, v ∼ N (0, V )



where w and v are white noise processes with mean 0 and covariances W and V respectively. For
each system given below, perform the following steps. You can use either continuous or discrete
time.

(a) (PTS: 0-2) Compute the infinite-horizon LQR controller gain K with Q(t) = I and R(t) = I.
(You can use the lqr function in Matlab.)

(b) (PTS: 0-2) Implement the Kalman filter update to compute a state estimate x̂(t). Assume
E[x(0)] = 0. Assume the covariance matrices W,V stay constant over time and have the
form

W = MDMT , V = NENT

where M and N are orthonormal matrices and D and E are diagonal matrices of the form

D =

σ
2
1 · · · 0
... . . . ...
0 · · · σ2

n

 , E =

τ
2
1 · · · 0
... . . . ...
0 · · · τ2o


M and N will be given. Initially, assume σi = 1 and τj = 1 for all i, j. You will vary σi and
τj in Part (f). (Refer to Specification)

(c) (PTS: 0-2) OPTIONAL What is an interpretation of the columns of M and N?
(d) (PTS: 0-2) Track the system trajectory for the following inputs.

i. Step Input: u = 1 +Kx̂

ii. Sine wave: u = sin(t) +Kx̂

Plot the state and estimated state (or error) trajectories.
(e) (PTS: 0-2) Compute the steady state Kalman gain and compare it’s performance with the

time varying gain update from Part (b) by plotting the trajectories.
(f) (PTS: 0-2) Vary the covariance matrices by adjusting the values of σi and τi. Plot the

trajectories.
(g) (PTS: 0-2) Comment on how varying the covariance matrices changes the performance of

the filter.

Pendulum Specification

dt = 0.02, x0 =
[
1 −0.5 π

16 − π
32

]⊺
W = MDMT , V = NENT

M =


1√
2

− 1√
2

0 0
1√
2

1√
2

0 0

0 0 1√
2

− 1√
2

0 0 1√
2

1√
2

 , N =

[
1√
2

1√
2

1√
2

− 1√
2

]

D = 10−4


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 , E = 10−4

[
1 0

0 1

]



Aircraft Specification

dt = 0.02, x0 =
[

π
16

π
64 − π

32

]⊺
W = MDMT , V = NENT

M =


1√
2

− 1√
2

0
1√
2

1√
2

0

0 0 1

 , N =
[
1
]

D = 10−6

1 0 0

0 1 0

0 0 1

 , E = 10−6
[
1
]

Systems

(a) Inverted Pendulum

System Parameters
i. M = mass of cart 0.5 [kg]
ii. m = mass of the pendulum 0.2 [kg]
iii. b = coefficient of friction for cart 0.1 [N/m/s]
iv. l = length of pendulum center of mass 0.3 [m]
v. I = mass moment of inertia of the pendulum 0.006 [kg ·m2]
vi. F = force applied to the cart
vii. x = cart position coordinate
viii. θ = pendulum angle from vertical (down)
ix. ϕ = θ − π

Equations of Motion (for small θ):

l
(
I +ml2

)
ϕ̈−mglϕ = mlẍ

(M +m)ẍ+ bẋ−mlϕ̈ = u



State-space:
ẋ

ẍ

ϕ̇

ϕ̈

 =


0 1 0 0

0 −(I+ml2)b
I(M+m)+Mml2

m2gl2

I(M+m)+Mml2
0

0 0 0

0 −mlb
I(M+m)+Mml2

mgl(M+m)
I(M+m)+Mml2




x

ẋ

ϕ

ϕ̇

+


0

I+ml2

I(M+m)+Mml2

0
ml

T (M+m)+Mml2

u

y =

[
1 0 0 0

0 0 1 0

]
x

ẋ

ϕ

ϕ̇

+

[
0

0

]
u


ẋ

ẍ

ϕ̇

ϕ̈

 =


0 1 0 0

0 −0.1818 2.6727 0

0 0 0 1

0 −0.4545 31.1818 0



x

ẋ

ϕ

ϕ̇

+


0

1.8182

0

4.5455

u

y =

[
1 0 0 0

0 0 1 0

]
x

ẋ

ϕ

ϕ̇

+

[
0

0

]
u

(b) Aircraft Pitch

System Parameters

α = angle of attack q = pitch rate
θ = pitch angle δ = elevator deflection angle
µ = ρSc̄

4m ρ = air density
S = area of wing c̄ = mean chord length
m = aircraft mass Ω = 2U

c̄

U = equilibrium flight of speed CT = Coefficient of Thrust
CD = Coefficient of Drag CL = Coefficient of Lift
CW = Coefficient of Weight CM = Coefficient of Pitch Moment
γ = Flight path angle σ = 1

1+µCL
= constant

iyy = normalized moment of inertia η = µσCM = constant



Equations of Motion:

α̇ = µΩσ

[
− (CL + CD)α+

1

(µ− CL)
q − (CW sin γ) θ + CL

]
q̇ =

µΩ

2iyy
[[CM − η (CL + CD)]α+ [CM + σCM (1− µCL)] q + (ηCW sin γ) δ]

θ̇ = Ωq

State-space:  α̇

q̇

θ̇

 =

 −0.313 56.7 0

−0.0139 −0.426 0

0 56.7 0


 α

q

θ

+

 0.232

0.0203

0

 [δ]

y =
[
0 0 1

] α

q

θ




