AE 513 - Multivariable Control - Autumn 2019

Homework 6

Due Date: Thurs, Nov 14, 2019 at 11:59pm

1. Laplace Transform

The Laplace transform of a function f(¢) is given by

£ = [ et d

Choose three of the following Laplace Transforms to compute:
(a) (PTS: 0-2) Delta function: £ (6(t)) =?

(b) (PTS: 0-2) Differentiation: £ (f(t)) =7

(c) (PTS: 0-2) Integration: £ (fot f(r) d7'> =7

(d) (PTS: 0-2) Frequency Shift: £ (e f(t)) =?

(e) (PTS: 0-2) Convolution: £ (fg gt —71)f(7) dT) =7

2. Transfer Functions

Consider the continuous time linear system

& = Az + Bu, z(0) = xo
y=Cx+ Du

(PTS: 0-2) Compute the Laplace transform of the output y(t), ie. L(y(t)) = Y (s). Your solution
should be in terms of the A, B,C, D, zo,U(s), where U(s) is the Laplace transform of u(t).

3. Matrix Identities

The Woodbury matrix identity is given by
-1
(A+UCV) L =A"1 - A*1U<C’1 + VA*U) VAl

A € R™™ invertible, C' € R™*™ invertible, U € R™*™ V € R"™*".

Side Note: If m < n, ie. C is smaller than A, this formula provides a way to update the inverse

of a matrix A that has a low rank matrix UCV added to it without having to computing the full
n x n inverse, (A + UCV)~L. Assuming we already know A~!, we can compute (A + UCV)~!
simply by computing C~! and then (C~! + VA~IU)~L. If m < n, for example if C € R'*!, this

operation is much cheaper computationally.

(a) For an invertible matrix M, show that

(I+M)yt=I—T+MM



(b) For an invertible matrix M, show that
M(I+M)" =T+M)'M

4. Sensitivity Functions

Consider the block diagram
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(a) G(s) is the plant transfer function.
(b) K(s) is the plant transfer function.

s) is the control signal.

(

(S) is the reference signal.
(S) is the output signal.

(

)
S) is the disturbance.
)

is the error between the output and reference
Show that
(PTS: 0-2) Y(s) = S(s)D(s) + T(s) (R(s) - N(s)) (1)
(PTS: 0-2) B(s) = 5(s)(R(s) = D(s)) +T(s)N(s) 2)
where
S(s) = (I + G(S)K(S)>_1 Sensitivity
7(s) = G()K (s) (T + G)K(5)) Complementary Sensitivity
Note: use the matrix identities from the previous problem.

(a) (PTS: 0-2) What is the effect of large S(s) on the output Y (s) and the error E(s)?
(b) (PTS: 0-2) What is the effect of large T'(s) on the output Y (s) and the error E(s)?

5. Kalman Filter and LQG Controller

Consider the dynamics of the form

& = Ax + Bu + w, w ~ N(0,W)
y=Cx+wv, v~ N(0,V)



where w and v are white noise processes with mean 0 and covariances W and V respectively. For

each system given below, perform the following steps. You can use either continuous or discrete

time.

(a)

(b)

(PTS: 0-2) Compute the infinite-horizon LQR controller gain K with Q(¢) = I and R(t) = I.
(You can use the 1qr function in Matlab.)

(PTS: 0-2) Implement the Kalman filter update to compute a state estimate Z(t). Assume
E[z(0)] = 0. Assume the covariance matrices W,V stay constant over time and have the
form

W =MDMT, V =NEN"
where M and N are orthonormal matrices and D and E are diagonal matrices of the form
o2 ... 0 ... 0
D=|: . . E= .
o --.. 07% 0 --- 702

M and N will be given. Initially, assume o; = 1 and 7; = 1 for all 4, j. You will vary o; and
7; in Part (f). (Refer to Specification)

(PTS: 0-2) OPTIONAL What is an interpretation of the columns of M and N7
(PTS: 0-2) Track the system trajectory for the following inputs.
i. Step Input: v=1+ Kz
ii. Sine wave: u = sin(t) + K&
Plot the state and estimated state (or error) trajectories.
(PTS: 0-2) Compute the steady state Kalman gain and compare it’s performance with the
time varying gain update from Part (b) by plotting the trajectories.
(PTS: 0-2) Vary the covariance matrices by adjusting the values of o; and 7;. Plot the
trajectories.

(PTS: 0-2) Comment on how varying the covariance matrices changes the performance of
the filter.
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Aircraft Specification
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(a) Inverted Pendulum
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System Parameters
i. M = mass of cart 0.5 [kg]
ii. m = mass of the pendulum 0.2 [kg]
iii. b = coefficient of friction for cart 0.1 [N/m/s]
iv. [ = length of pendulum center of mass 0.3 [m]
v. I = mass moment of inertia of the pendulum 0.006 [kg - m?]
vi. F' = force applied to the cart
vii. & = cart position coordinate
viii. § = pendulum angle from vertical (down)
ix. o=0—m
Equations of Motion (for small 6):

(I +mi?) ¢ — mgle = mli
(M +m)i + b —mld =u

OL ..



State-space:
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(b) Aircraft Pitch

System Parameters

a = angle of attack

0 = pitch angle

n= G

S = area of wing

m = aircraft mass

U = equilibrium flight of speed
Cp = Coeflicient of Drag

Cw = Coeflicient of Weight

~ = Flight path angle

iyy = normalized moment of inertia
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q = pitch rate
0 = elevator deflection angle
p = air density
¢ = mean chord length

—2U
Q=7

C7 = Coefficient of Thrust
C'1, = Coefficient of Lift
Cyr = Coefficient of Pitch Moment

o= = constant

1
1+uCr
n = puoChy = constant



Equations of Motion:

a=pQo |—(CL+Cp)a+ q— (Cwsiny) 0+ Cp

(n—"Cr)

) Q ‘

q= QMT [[Crr —n(CL+Cp)]a+ [Cry +0Ch (1 — uCL)] g + (nCw siny) 4]
Yy

QZQq

State-space:
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