AE 513-Multivariable Control - Autumn 2019

Homework 6

Due Date: Thurs, Nov $14^{\text {th }}, 2019$ at 11:59pm

1. Laplace Transform

The Laplace transform of a function $f(t)$ is given by

$$
\mathcal{L}(f)(s)=\int_{0}^{\infty} f(t) e^{-s t} d t
$$

Choose three of the following Laplace Transforms to compute:
(a) (PTS: 0-2) Delta function: $\mathcal{L}(\delta(t))=$?
(b) (PTS: 0-2) Differentiation: $\mathcal{L}(\dot{f}(t))=$?
(c) (PTS: 0-2) Integration: $\mathcal{L}\left(\int_{0}^{t} f(\tau) d \tau\right)=$?
(d) (PTS: 0-2) Frequency Shift: $\mathcal{L}\left(e^{a t} f(t)\right)=$?
(e) (PTS: 0-2) Convolution: $\mathcal{L}\left(\int_{0}^{t} g(t-\tau) f(\tau) d \tau\right)=$?

2. Transfer Functions

Consider the continuous time linear system

$$
\begin{aligned}
\dot{x} & =A x+B u, \quad x(0)=x_{0} \\
y & =C x+D u
\end{aligned}
$$

(PTS: 0-2) Compute the Laplace transform of the output $y(t)$, ie. $\mathcal{L}(y(t))=Y(s)$. Your solution should be in terms of the $A, B, C, D, x_{0}, U(s)$, where $U(s)$ is the Laplace transform of $u(t)$.

3. Matrix Identities

The Woodbury matrix identity is given by

$$
(A+U C V)^{-1}=A^{-1}-A^{-1} U\left(C^{-1}+V A^{-1} U\right)^{-1} V A^{-1}
$$

$A \in R^{n \times n}$ invertible, $C \in R^{m \times m}$ invertible, $U \in R^{n \times m}, V \in R^{m \times n}$.
Side Note: If $m<n$, ie. C is smaller than A, this formula provides a way to update the inverse of a matrix A that has a low rank matrix $U C V$ added to it without having to computing the full $n \times n$ inverse, $(A+U C V)^{-1}$. Assuming we already know A^{-1}, we can compute $(A+U C V)^{-1}$ simply by computing C^{-1} and then $\left(C^{-1}+V A^{-1} U\right)^{-1}$. If $m \ll n$, for example if $C \in R^{1 \times 1}$, this operation is much cheaper computationally.
(a) For an invertible matrix M, show that

$$
(I+M)^{-1}=I-(I+M)^{-1} M
$$

(b) For an invertible matrix M, show that

$$
M(I+M)^{-1}=(I+M)^{-1} M
$$

4. Sensitivity Functions

Consider the block diagram

where
(a) $G(s)$ is the plant transfer function.
(b) $K(s)$ is the plant transfer function.
(c) $U(s)$ is the control signal.
(d) $R(S)$ is the reference signal.
(e) $Y(S)$ is the output signal.
(f) $D(S)$ is the disturbance.
(g) $E(S)$ is the error between the output and reference

Show that
(PTS: 0-2) $\quad Y(s)=S(s) D(s)+T(s)(R(s)-N(s))$
(PTS: 0-2) $\quad E(s)=S(s)(R(s)-D(s))+T(s) N(s)$
where

$$
\begin{array}{lr}
S(s)=(I+G(s) K(s))^{-1} & \text { Sensitivity } \\
T(s)=G(s) K(s)(I+G(s) K(s))^{-1} & \text { Complementary Sensitivity }
\end{array}
$$

Note: use the matrix identities from the previous problem.
(a) (PTS: 0-2) What is the effect of large $S(s)$ on the output $Y(s)$ and the error $E(s)$?
(b) (PTS: 0-2) What is the effect of large $T(s)$ on the output $Y(s)$ and the error $E(s)$?

5. Kalman Filter and LQG Controller

Consider the dynamics of the form

$$
\begin{array}{rrr}
\dot{x} & =A x+B u+w, & w \\
y & =C x+v, & v \\
\sim \mathcal{N}(0, W) \\
& \sim \mathcal{N}(0, V)
\end{array}
$$

where w and v are white noise processes with mean 0 and covariances W and V respectively. For each system given below, perform the following steps. You can use either continuous or discrete time.
(a) (PTS: 0-2) Compute the infinite-horizon LQR controller gain K with $Q(t)=I$ and $R(t)=I$. (You can use the lqr function in Matlab.)
(b) (PTS: 0-2) Implement the Kalman filter update to compute a state estimate $\hat{x}(t)$. Assume $E[x(0)]=0$. Assume the covariance matrices W, V stay constant over time and have the form

$$
W=M D M^{T}, \quad V=N E N^{T}
$$

where M and N are orthonormal matrices and D and E are diagonal matrices of the form

$$
D=\left[\begin{array}{ccc}
\sigma_{1}^{2} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \sigma_{n}^{2}
\end{array}\right], \quad E=\left[\begin{array}{ccc}
\tau_{1}^{2} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \tau_{o}^{2}
\end{array}\right]
$$

M and N will be given. Initially, assume $\sigma_{i}=1$ and $\tau_{j}=1$ for all i, j. You will vary σ_{i} and τ_{j} in Part (f). (Refer to Specification)
(c) (PTS: 0-2) OPTIONAL What is an interpretation of the columns of M and N ?
(d) (PTS: 0-2) Track the system trajectory for the following inputs.
i. Step Input: $u=1+K \hat{x}$
ii. Sine wave: $u=\sin (t)+K \hat{x}$

Plot the state and estimated state (or error) trajectories.
(e) (PTS: 0-2) Compute the steady state Kalman gain and compare it's performance with the time varying gain update from Part (b) by plotting the trajectories.
(f) (PTS: 0-2) Vary the covariance matrices by adjusting the values of σ_{i} and τ_{i}. Plot the trajectories.
(g) (PTS: 0-2) Comment on how varying the covariance matrices changes the performance of the filter.

Pendulum Specification

$$
\begin{aligned}
d t & =0.02, \quad x_{0}=\left[\begin{array}{llll}
1 & -0.5 & \frac{\pi}{16} & -\frac{\pi}{32}
\end{array}\right]^{\top} \\
W & =M D M^{T}, \quad V=N E N^{T} \\
M & =\left[\begin{array}{cccc}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 & 0 \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 & 0 \\
0 & 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
0 & 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right], \quad N=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right] \\
D & =10^{-4}\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \quad E=10^{-4}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

Aircraft Specification

$$
\begin{aligned}
d t & =0.02, \quad x_{0}=\left[\begin{array}{ccc}
\frac{\pi}{16} & \frac{\pi}{64} & -\frac{\pi}{32}
\end{array}\right]^{\top} \\
W & =M D M^{T}, \quad V=N E N^{T} \\
M & =\left[\begin{array}{ccc}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\
0 & 0 & 1
\end{array}\right], \quad N=[1] \\
D & =10^{-6}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \quad E=10^{-6}[1]
\end{aligned}
$$

Systems

(a) Inverted Pendulum

System Parameters
i. $M=$ mass of cart $0.5[\mathrm{~kg}]$
ii. $m=$ mass of the pendulum $0.2[\mathrm{~kg}]$
iii. $b=$ coefficient of friction for cart $0.1[\mathrm{~N} / \mathrm{m} / \mathrm{s}]$
iv. $l=$ length of pendulum center of mass $0.3[\mathrm{~m}]$
v. $I=$ mass moment of inertia of the pendulum $0.006\left[\mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$
vi. $F=$ force applied to the cart
vii. $x=$ cart position coordinate
viii. $\theta=$ pendulum angle from vertical (down)
ix. $\phi=\theta-\pi$

Equations of Motion (for small θ):

$$
\begin{gathered}
l\left(I+m l^{2}\right) \ddot{\phi}-m g l \phi=m l \ddot{x} \\
(M+m) \ddot{x}+b \dot{x}-m l \ddot{\phi}=u
\end{gathered}
$$

State-space:

$$
\begin{aligned}
{\left[\begin{array}{c}
\dot{x} \\
\ddot{x} \\
\dot{\phi} \\
\ddot{\phi}
\end{array}\right] } & =\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & \frac{-\left(I+m l^{2}\right) b}{I(M+m)+M m l^{2}} & 0 \\
0 & 0 & m^{2} g^{2} \\
0 & \frac{-m l b}{I(M+m)+M m l^{2}} & 0 \\
I(M+m)+M m l^{2} & 0 \\
\frac{m g l(M+m)}{I(M+m)+M m l^{2}}
\end{array}\right]\left[\begin{array}{l}
x \\
\dot{x} \\
\phi \\
\dot{\phi}
\end{array}\right]+\left[\begin{array}{c}
0 \\
\frac{I+m l^{2}}{I\left(M+m+M m l^{2}\right.} \\
0 \\
\frac{m l}{T(M+m)+M m l^{2}}
\end{array}\right] u \\
\mathbf{y} & =\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
\dot{x} \\
\phi \\
\dot{\phi}
\end{array}\right]+\left[\begin{array}{l}
0 \\
0
\end{array}\right] u \\
{\left[\begin{array}{l}
\dot{x} \\
\ddot{x} \\
\dot{\phi} \\
\ddot{\phi}
\end{array}\right] } & =\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & -0.1818 & 2.6727 & 0 \\
0 & 0 & 0 & 1 \\
0 & -0.4545 & 31.1818 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
\dot{x} \\
\phi \\
\dot{\phi}
\end{array}\right]+\left[\begin{array}{c}
0 \\
1.8182 \\
0 \\
4.5455
\end{array}\right] u \\
y & =\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
\dot{x} \\
\phi \\
\dot{\phi}
\end{array}\right]+\left[\begin{array}{l}
0 \\
0
\end{array}\right] u
\end{aligned}
$$

(b) Aircraft Pitch

System Parameters

$$
\begin{array}{lc}
\alpha=\text { angle of attack } & q=\text { pitch rate } \\
\theta=\text { pitch angle } & \delta=\text { elevator deflection angle } \\
\mu=\frac{\rho S \bar{c}}{4 m} & \rho=\text { air density } \\
S=\text { area of wing } & \bar{c}=\text { mean chord length } \\
m=\text { aircraft mass } & \Omega=\frac{2 U}{\bar{c}} \\
U=\text { equilibrium flight of speed } & C_{T}=\text { Coefficient of Thrust } \\
C_{D}=\text { Coefficient of Drag } & C_{L}=\text { Coefficient of Lift } \\
C_{W}=\text { Coefficient of Weight } & C_{M}=\text { Coefficient of Pitch Moment } \\
\gamma=\text { Flight path angle } & \sigma=\frac{1}{1+\mu C_{L}}=\text { constant } \\
i_{y y}=\text { normalized moment of inertia } & \eta=\mu \sigma C_{M}=\text { constant }
\end{array}
$$

Equations of Motion:

$$
\begin{aligned}
& \dot{\alpha}=\mu \Omega \sigma\left[-\left(C_{L}+C_{D}\right) \alpha+\frac{1}{\left(\mu-C_{L}\right)} q-\left(C_{W} \sin \gamma\right) \theta+C_{L}\right] \\
& \dot{q}=\frac{\mu \Omega}{2 i_{y y}}\left[\left[C_{M}-\eta\left(C_{L}+C_{D}\right)\right] \alpha+\left[C_{M}+\sigma C_{M}\left(1-\mu C_{L}\right)\right] q+\left(\eta C_{W} \sin \gamma\right) \delta\right] \\
& \dot{\theta}=\Omega q
\end{aligned}
$$

State-space:

$$
\begin{aligned}
{\left[\begin{array}{c}
\dot{\alpha} \\
\dot{q} \\
\dot{\theta}
\end{array}\right] } & =\left[\begin{array}{ccc}
-0.313 & 56.7 & 0 \\
-0.0139 & -0.426 & 0 \\
0 & 56.7 & 0
\end{array}\right]\left[\begin{array}{l}
\alpha \\
q \\
\theta
\end{array}\right]+\left[\begin{array}{c}
0.232 \\
0.0203 \\
0
\end{array}\right][\delta] \\
y & =\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\alpha \\
q \\
\theta
\end{array}\right]
\end{aligned}
$$

