
AE 513 - Multivariable Control - Autumn 2019

Homework 7

Due Date: Tues, Nov 26th, 2019 at 11:59pm

1. Bode and Nyquist Plots

Use the tool in the link below to visualize the Bode plots for the transfer functions listed below.

https://mathlets.org/mathlets/bode-and-nyquist-plots/

Make sure to try out the iω and Angles options.

For each case, take at least one screenshot and comment on the behavior of the transfer
function and how it is represented in the Bode plots.

Note: The goal is to get intuition on how poles and zeros affect transfer function behavior. Make
sure you spend as much or more time playing around with it as you do taking screenshots.

(a) (PTS: 0-2) One real pole. Vary λ along the real axis. Specifically note what happens when
λ = 0.

G(s) =
1

s− λ



(b) (PTS: 0-2) A pair of complex poles. Vary the poles and specifically note what happens
when they cross the jω-axis.

G(s) =
1

(s− λ1)(s− λ2)

(c) (PTS: 0-2) One real pole and one real zero. Vary the zero z along the real axis. In particular
note, the high frequency behavior of the transfer function.

G(s) =
s− z

s− λ

(d) (PTS: 0-2) A pair of complex poles and a real zero. Vary the zero z along the real axis. In
particular note what happens to the phase when the zero crosses the jω-axis.

G(s) =
s− z

(s− λ1)(s− λ2)

(e) (PTS: 0-2) A pair of complex poles and a pair of complex zeros. Vary the zeros. Note what
happens when the zeros cross the jω-axis.

G(s) =
(s− z1)(s− z2)

(s− λ1)(s− λ2)

2. Proper Transfer Functions
Transfer functions that correspond to causal systems - where only past information affects the
present (as opposed to future information) always have a denominator with polynomial degree
greater than or equal to the numerator. These transfer functions are called proper.

(a) Proper: Denominator degree greater than or equal to numerator degree.
(b) Strictly Proper: . Denominator degree strictly greater than numerator degree.

Non-proper transfer functions can be used in signal processing for post-processing and smoothing
signals after the fact.

(a) (PTS: 0-2 What is the high frequency behavior of a transfer function where the degree of
the numerator and denominator are equal? What is the high frequency behavior of a strictly
proper transfer function?

(b) (PTS: 0-2)
Consider the SISO LTI system

ẋ = Ax+Bu

y = Cx+Du

where A ∈ Rn×n, B ∈ Rn×1, C ∈ R1×n, D ∈ R1×1 where A is diagonalizable with distinct
eigenvalues. Note that D transfers the input u to the output y directly with out passing it
through the dynamics. Show that the transfer function representation G(s) of this system is
strictly proper if D = 0.



(c) (PTS: 0-2) Now consider the MIMO generalization where A ∈ Rn×n, B ∈ Rn×m, C ∈ Ro×n,
D ∈ Ro×m. Let G(s) be the o×m dimensional matrix of transfer functions. Show that Gkl(s)

is strictly proper if Dkl = 0. (Hint: Diagonalize A.)
(d) (PTS: 0-2) In general, is the transfer function representation of full state feedback strictly

proper or just proper?
(e) (PTS: 0-2) From the lecture notes, the state space representation of the continuous time

steady state LQG controller for reference tracking can be written as

˙̂x =
[
A+BK + LC

]
x̂+

[
−BK −LC

] [r
y

]

u = Kx̂+
[
−K 0

] [r
y

]

In general, are the transfer functions from the reference r(t) to the control signal u(t) strictly
proper or just proper? What about the transfer functions from the output y(t)?

3. MIMO Bode Plots
Consider the dynamics

ẋ = Ax+Bu

y = Cx

where

A =

 0 2 0

−2 0 0

0 0 −4

 , B =

1 0 0

0 1 0

0 0 1

 , C =

 1 2 0

−2 1 0

0 0 1

 ,

and consider the transfer function

L(s) = C(sI −A)−1B

Let σ̄(·) be the maximum singular value and σ(L(·) be the minimum singular value. Let

S(s) = (I + L(s))−1, T (s) = L(s)(I + L(s))−1

Plot the following on a log-log scale and comment. You can use the svd commmand in MATLAB.

(a) (PTS: 0-2) σ̄(L(jω)), σ(L(jω))
(b) (PTS: 0-2) σ̄(S(jω)), σ(S(jω))
(c) (PTS: 0-2) σ̄(T (jω)), σ(T (jω))

4. Extended Kalman Filter
Consider the following first-order nonlinear system:

x[t+ 1] = x[t]

y[t] = sin (x[t] · t) + v[t]



(a) (PTS: 0-2) Create 201 synthetic measurements of the aforementioned system with a time
step of 0.1 seconds with x[0] = 1 and covariance V = 0.1.

(b) (PTS: 0-2) Develop an extended Kalman filter to estimate the frequency x[t].
(c) (PTS: 0-2) Run the filter initializing it with the initial estimates given below.

i. x̂[0] = 10, S[0] = 1

ii. x̂[0] = 7, S[0] = 1

iii. x̂[0] = 4, S[0] = 1


