AE 513-Multivariable Control - Autumn 2019

Homework 8

Due Date: Mon, Dec $2^{\text {nd }}, 2019$ at 11:59pm

1. Lyapunov Equation and Stability

(a) (PTS: 0-2) Show that if A is stable, then $P=\int_{0}^{\infty} e^{A^{T} t} Q e^{A t} d t$ solves

$$
A^{T} P+P A+Q=0
$$

(b) (PTS: 0-2) Show that if there exists $P=P^{T}>0$ that solves

$$
A^{T} P+P A+Q=0
$$

for $Q=Q^{T}>0$, then A is stable and find a bound on the largest real part of the eigenvalues of A in terms of the eigenvalues of Q and P.

Suppose $V(x)$ is positive definite, ie. $V(x)>0 \forall x \neq 0, V(0)=0, V(x)$ has bounded level sets.
(c) (PTS: 0-2) Show that if $\frac{\partial V}{\partial x} f(x)<0$, then $x=0$ is asymptotically stable.
(d) (PTS: 0-2) Show that if $\frac{\partial V}{\partial x} f(x)<\mu V(x)$, then $x=0$ is exponentially stable. What is an upper bound on the decay rate?

2. Hamiltonian Systems for Riccati Equations

Let

$$
\begin{gathered}
A=\left[\begin{array}{ccc}
-2 & 2 & -1 \\
3 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right], \quad B=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] \\
Q=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \quad R=[1], \quad Q_{T}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
\end{gathered}
$$

(a) (PTS: 0-2) Use the Hamiltonian system to compute the solution $P(t)$ to the Riccati differential equation

$$
-\dot{P}=A^{T} P+P A+Q-P B R^{-1} B^{T} P, \quad P(T)=Q_{T}
$$

Show the calculation method and then write down $P(t)$ at several different time steps.
(b) (PTS: 0-2) Use the Hamiltonian matrix to compute the solution to the algebraic Riccati equation

$$
0=A^{T} P+P A+Q-P B R^{-1} B^{T} P
$$

3. Adjoint Method for Optimal Control

Consider the problem of finding the shape of a slope that causes a frictionless stone to slide the farthest in a given period of time.

This problem can be formulated as

$$
\begin{array}{cl}
\max _{\substack{\theta(t) \text { for } \\
t \in[0, T]}} \quad J=x(T) \\
\text { s.t. } & \underbrace{\left[\begin{array}{c}
\dot{x} \\
\dot{y} \\
\dot{v}
\end{array}\right]}_{\dot{z}}=\underbrace{\left[\begin{array}{c}
v \cos (\theta) \\
v \sin (\theta) \\
-g \sin (\theta)
\end{array}\right]}_{f(z, \theta)}, \quad\left[\begin{array}{l}
x(0) \\
y(0) \\
v(0)
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\end{array}
$$

where x and y are the horizontal and vertical positions respectively, v is the velocity, $g=9.81 \mathrm{~m} / \mathrm{s}^{2}$ is the acceleration due to gravity, the cost $J=x(T)$ is the final horizontal position, and $\theta(t)$ is the angle of the slope (from horizontal) at time t. Let $z \in R^{3}$ be the full state vector $z=\left[\begin{array}{ll}x & y\end{array}\right]^{T}$.
(a) (PTS: 0-2) Write expressions for $\frac{\partial f}{\partial z}$ and $\frac{\partial f}{\partial \theta}$.
(b) (PTS: 0-2) Write out the backwards differential equation for computing the co-state $p(t)$ from the terminal condition $p(T)=\frac{\partial J}{\partial z(T)}=\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$ and the expression for computing $\frac{\partial J}{\partial \theta(t)}$ from the co-state $p(t)$.
(c) (PTS: 0-2) Write code to compute an ascent direction $\frac{\partial J}{\partial \theta(t)}$ for the cost J with respect to the slope at each time $\theta(t)$.
(d) (PTS: 0-2) Initializing $\theta(t)=0$ for $t \in[0, T]$ (a flat slope), write code to update the slope using gradient ascent with step size α according to the equation

$$
\theta^{+}(t)=\theta(t)+\alpha \frac{\partial J}{\partial \theta(t)}
$$

until the cost converges. You can work in discrete time or continuous time. If you use discrete time, you can assume the simple discretization scheme

$$
z[t+1]=z[t]+\Delta t f(z, \theta)
$$

Use $\alpha=0.01, \Delta t=0.1$, and $T=20$ seconds (200 time steps).
(e) (PTS: 0-2) Plot the resulting optimal slope as well as several of the suboptimal slopes from the earlier iterations.

Note Problems 4 and 5 will be discussed in class on Tuesday (Nov 26). They deal with the H_{2} and H_{∞} design methods.

4. Optimal Controller Synthesis (CHOOSE 4 OR 5)

Consider the simple harmonic oscillator (spring-mass-damper) as a generalized process G,

$$
\begin{aligned}
m \ddot{x} & =-k x-b \dot{x}+u+\mu \\
y & =x+\eta \\
\omega & =(\mu, \eta), \quad z=(x, u) \\
m & =k=b=1
\end{aligned}
$$

(a) Compute the H_{2} and H_{∞} norm of the open-loop transfer function $G_{z \omega}$, set $u=0$, and plot step response.
(b) Plot the open-loop sensitivity transfer function $1 /\left(1+G_{y u}\right)$ and compute the gain, phase, and stability margins.
(c) Synthesize an H_{2} - optimal state-feedback controller K_{2} treating ω and z as an error to be minimized with respect to the standard \mathcal{L}_{2} norm, compute, the H_{2} norm of the closed-loop transfer function and compute the gain, phase and stability margin.
(d) Same as Part (c) but use the H_{∞} norm.
(e) Discuss Part (a) to Part (d), do the result make sense? What are the difference between how H_{2} and H_{∞} hape the sensitivity transfer function and margins? Which controller would you choose? When and why?
(f) Same as Part (c) but synthesize an output-feedback controller.
(g) Same as Part (d) but synthesize an output-feedback controller.

5. Robust Control and Disturbance Rejection

Consider the suspension system.

System Parameters
(a) $M_{1}=1 / 4$ bus body mass $2500[k g]$
(b) $M_{2}=$ suspension mass $320[k g]$
(c) $K_{1}=$ spring constant of suspension system $80,000[\mathrm{~N} / \mathrm{m}]$
(d) $K_{2}=$ spring constant of wheel and tire $500,000[\mathrm{~N} / \mathrm{m}]$
(e) $b_{1}=$ damping constant of suspension system $350[N \cdot \mathrm{~s} / \mathrm{m}]$
(f) $b_{2}=$ damping constant of wheel and tire $15,020[N \cdots / m]$
(g) $U=$ control force
(h) $W=$ road disturbance

Equations of Motion:

$$
\begin{aligned}
& M_{1} \ddot{X}_{1}=-b_{1}\left(\dot{X}_{1}-\dot{X}_{2}\right)-K_{1}\left(X_{1}-X_{2}\right)+U \\
& M_{2} \ddot{X}_{2}=b_{1}\left(\dot{X}_{1}-\dot{X}_{2}\right)+K_{1}\left(X_{1}-X_{2}\right)+b_{2}\left(\dot{W}-\dot{X}_{2}\right)+K_{2}\left(W-X_{2}\right)-U
\end{aligned}
$$

State-space:

$$
\begin{aligned}
& {\left[\begin{array}{c}
\dot{X}_{1} \\
\ddot{X}_{1} \\
\dot{X}_{2} \\
\ddot{X}_{2}
\end{array}\right]=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
\frac{-b_{1} b_{2}}{M_{1} M_{2}} & 0 & {\left[\frac{b_{1}}{M_{1}}\left(\frac{b_{1}}{M_{1}}+\frac{b_{1}}{M_{2}}+\frac{b_{2}}{M_{2}}\right)-\frac{K_{1}}{M_{1}}\right]} & \frac{-b_{1}}{M_{1}} \\
\frac{b_{2}}{M_{2}} & 0 & -\left(\frac{b_{1}}{M_{1}}+\frac{b_{1}}{M_{2}}+\frac{b_{2}}{M_{2}}\right) & 1 \\
\frac{K_{2}}{M_{2}} & 0 & -\left(\frac{K_{1}}{M_{1}}+\frac{K_{1}}{M_{2}}+\frac{R_{2}}{M_{2}}\right) & 0
\end{array}\right]\left[\begin{array}{c}
X_{1} \\
\dot{X}_{1} \\
X_{2} \\
\dot{X}_{2}
\end{array}\right]+} \\
& {\left[\begin{array}{cc}
0 & 0 \\
\frac{1}{M_{1}} & \frac{b_{1} b_{2}}{M_{1} M_{2}} \\
0 & \frac{-b_{2}}{M_{2}} \\
\left(\frac{1}{M_{1}}+\frac{1}{M_{2}}\right) & \frac{-K_{2}}{M_{2}}
\end{array}\right]\left[\begin{array}{c}
U \\
W
\end{array}\right]} \\
& Y=\left[\begin{array}{llll}
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
X_{1} \\
\dot{X}_{1} \\
X_{2} \\
\dot{X}_{2}
\end{array}\right]+\left[\begin{array}{ll}
0 & 0
\end{array}\right]\left[\begin{array}{c}
U \\
W
\end{array}\right] \\
& {\left[\begin{array}{l}
\dot{x_{1}} \\
\dot{x_{2}} \\
\dot{x_{3}} \\
\dot{x_{4}}
\end{array}\right]=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-6.571 & 0 & -25.26 & -0.14 \\
46.94 & 0 & -48.17 & 1 \\
1563 & 0 & -1845 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]+\left[\begin{array}{cc}
0 & 0 \\
0.0004 & 6.571 \\
0 & -46.94 \\
0.003525 & -1563
\end{array}\right]\left[\begin{array}{c}
U \\
W
\end{array}\right]} \\
& Y=\left[\begin{array}{llll}
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]+\left[\begin{array}{ll}
0 & 0
\end{array}\right]\left[\begin{array}{c}
U \\
W
\end{array}\right]
\end{aligned}
$$

(a) (PTS: 0-2) Use state feedback setup to compute the continuous time infinite-horizon LQR controller gain K with Q and R specified below. What is the gain matrix and the norm of
the close-loop transfer function?

$$
Q=\left[\begin{array}{cccc}
10^{3} & 0 & 0 & 0 \\
0 & 10^{5} & 0 & 0 \\
0 & 0 & 3 \cdot 10^{4} & 0 \\
0 & 0 & 0 & 10^{6}
\end{array}\right], \quad R=[1]
$$

(b) (PTS: 0-2) Use state feedback setup to compute the \mathcal{H}_{2} and \mathcal{H}_{∞} controller replicating the result of LQR controller in Part (a). What are the gain matrix and the norm of the close-loop transfer function?
(c) (PTS: 0-2) Use state feedback setup to compute the \mathcal{H}_{2} and \mathcal{H}_{∞} controllers minimize x_{3} and u with weighting $W=10^{5}$ on x_{3}. What are the gain matrix and the norm of the close-loop transfer function?
(d) (PTS: 0-2) Compare the transfer function response (Bode) of LQR, \mathcal{H}_{2}, and \mathcal{H}_{∞} from disturbance to $x_{3} .5$ Bode plots.
(e) (PTS: 0-2) Simulate the closed loop system of LQR, \mathcal{H}_{2}, and \mathcal{H}_{∞} for 10 s with a $0.1-\mathrm{m}$ step disturbance input starting at 1 s with zero initial condition and plot $x_{3} .5$ simulations.
(f) (PTS: 0-2) Use output feedback setup to compute the continuous time infinite-horizon LQR controller gain K with Q and R specified in Part (a). What is the gain matrix and the norm of the close-loop transfer function?
(g) (PTS: 0-2) Use output feedback setup to compute the \mathcal{H}_{2} and \mathcal{H}_{∞} controller replicating the result of LQR controller in Part (a). What are the gain matrix and the norm of the close-loop transfer function?
(h) (PTS: 0-2) Use output feedback setup to compute the \mathcal{H}_{2} and \mathcal{H}_{∞} controllers minimize x_{3} and u with weighting $W=10^{5}$ on x_{3}. What are the gain matrix and the norm of the close-loop transfer function?
(i) (PTS: 0-2) Compare the transfer function response (Bode) of LQR, \mathcal{H}_{2}, and \mathcal{H}_{∞} from disturbance to x_{3}. 5 Bode plots.
(j) (PTS: 0-2) Simulate the closed loop system of LQR, \mathcal{H}_{2}, and \mathcal{H}_{∞} for 10 s with a $0.1-\mathrm{m}$ step disturbance input starting at 1 s with zero initial condition and plot $x_{3} .5$ simulations.

