
AE 513 - Multivariable Control - Autumn 2019

Homework 8

Due Date: Mon, Dec 2nd, 2019 at 11:59pm

1. Lyapunov Equation and Stability

(a) (PTS: 0-2) Show that if A is stable, then P =
∫∞
0 eA

T tQeAt dt solves

ATP + PA+Q = 0

(b) (PTS: 0-2) Show that if there exists P = P T > 0 that solves

ATP + PA+Q = 0

for Q = QT > 0, then A is stable and find a bound on the largest real part of the eigenvalues
of A in terms of the eigenvalues of Q and P .

Suppose V (x) is positive definite, ie. V (x) > 0 ∀x ̸= 0, V (0) = 0, V (x) has bounded level
sets.

(c) (PTS: 0-2) Show that if ∂V
∂x f(x) < 0, then x = 0 is asymptotically stable.

(d) (PTS: 0-2) Show that if ∂V
∂x f(x) < µV (x), then x = 0 is exponentially stable. What is an

upper bound on the decay rate?

2. Hamiltonian Systems for Riccati Equations
Let

A =

−2 2 −1

3 1 0

−1 0 1

 , B =

11
0



Q =

1 0 0

0 1 0

0 0 1

 , R =
[
1
]
, QT =

1 0 0

0 1 0

0 0 1


(a) (PTS: 0-2) Use the Hamiltonian system to compute the solution P (t) to the Riccati differ-

ential equation

−Ṗ = ATP + PA+Q− PBR−1BTP, P (T ) = QT

Show the calculation method and then write down P (t) at several different time steps.
(b) (PTS: 0-2) Use the Hamiltonian matrix to compute the solution to the algebraic Riccati

equation

0 = ATP + PA+Q− PBR−1BTP



3. Adjoint Method for Optimal Control

Consider the problem of finding the shape of a slope that causes a frictionless stone to slide the
farthest in a given period of time.

This problem can be formulated as

max
θ(t) for
t∈[0,T ]

J = x(T )

s.t.

ẋẏ
v̇


︸︷︷︸

ż

=

 v cos(θ)

v sin(θ)

−g sin(θ)


︸ ︷︷ ︸

f(z,θ)

,

x(0)y(0)

v(0)

 =

00
0



where x and y are the horizontal and vertical positions respectively, v is the velocity, g = 9.81m/s2

is the acceleration due to gravity, the cost J = x(T ) is the final horizontal position, and θ(t) is
the angle of the slope (from horizontal) at time t. Let z ∈ R3 be the full state vector z = [x y v]T .

(a) (PTS: 0-2) Write expressions for ∂f
∂z and ∂f

∂θ .
(b) (PTS: 0-2) Write out the backwards differential equation for computing the co-state p(t)

from the terminal condition p(T ) = ∂J
∂z(T ) = [1 0 0] and the expression for computing ∂J

∂θ(t)

from the co-state p(t).
(c) (PTS: 0-2) Write code to compute an ascent direction ∂J

∂θ(t) for the cost J with respect to
the slope at each time θ(t).

(d) (PTS: 0-2) Initializing θ(t) = 0 for t ∈ [0, T ] (a flat slope), write code to update the slope
using gradient ascent with step size α according to the equation

θ+(t) = θ(t) + α ∂J
∂θ(t)

until the cost converges. You can work in discrete time or continuous time. If you use discrete
time, you can assume the simple discretization scheme

z[t+ 1] = z[t] + ∆tf(z, θ)

Use α = 0.01, ∆t = 0.1, and T = 20 seconds (200 time steps).
(e) (PTS: 0-2) Plot the resulting optimal slope as well as several of the suboptimal slopes from

the earlier iterations.



Note Problems 4 and 5 will be discussed in class on Tuesday (Nov 26). They deal with the H2

and H∞ design methods.

4. Optimal Controller Synthesis (CHOOSE 4 OR 5)
Consider the simple harmonic oscillator (spring-mass-damper) as a generalized process G,

mẍ = −kx− bẋ+ u+ µ

y = x+ η

ω =
(
µ, η

)
, z =

(
x, u

)
m = k = b = 1

(a) Compute the H2 and H∞ norm of the open-loop transfer function Gzω, set u = 0, and plot
step response.

(b) Plot the open-loop sensitivity transfer function 1/(1+Gyu)and compute the gain, phase, and
stability margins.

(c) Synthesize an H2- optimal state-feedback controller K2 treating ω and z as an error to be
minimized with respect to the standard L2 norm, compute, the H2 norm of the closed-loop
transfer function and compute the gain, phase and stability margin.

(d) Same as Part (c) but use the H∞ norm.
(e) Discuss Part (a) to Part (d), do the result make sense? What are the difference between how

H2 and H∞ hape the sensitivity transfer function and margins? Which controller would you
choose? When and why?

(f) Same as Part (c) but synthesize an output-feedback controller.
(g) Same as Part (d) but synthesize an output-feedback controller.

5. Robust Control and Disturbance Rejection
Consider the suspension system.

System Parameters

(a) M1 = 1/4 bus body mass 2500 [kg]



(b) M2 = suspension mass 320 [kg]
(c) K1 = spring constant of suspension system 80, 000 [N/m]
(d) K2 = spring constant of wheel and tire 500, 000 [N/m]
(e) b1 = damping constant of suspension system 350 [N · s/m]
(f) b2 = damping constant of wheel and tire 15, 020 [N · · · /m]
(g) U = control force
(h) W = road disturbance

Equations of Motion:

M1Ẍ1 = −b1

(
Ẋ1 − Ẋ2

)
−K1 (X1 −X2) + U

M2Ẍ2 = b1

(
Ẋ1 − Ẋ2

)
+K1 (X1 −X2) + b2

(
Ẇ − Ẋ2

)
+K2 (W −X2)− U

State-space:


Ẋ1

Ẍ1

Ẋ2

Ẍ2

 =


0 1 0 0

−b1b2
M1M2

0
[

b1
M1

(
b1
M1

+ b1
M2

+ b2
M2

)
− K1

M1

]
−b1
M1

b2
M2

0 −
(

b1
M1

+ b1
M2

+ b2
M2

)
1

K2
M2

0 −
(

K1
M1

+ K1
M2

+ R2
M2

)
0




X1

Ẋ1

X2

Ẋ2

+


0 0
1

M1

b1b2
M1M2

0 −b2
M2(

1
M1

+ 1
M2

)
−K2
M2


[

U

W

]

Y =
[
0 0 1 0

]
X1

Ẋ1

X2

Ẋ2

+
[
0 0

] [ U

W

]


ẋ1
ẋ2
ẋ3
ẋ4

 =


0 1 0 0

−6.571 0 −25.26 −0.14

46.94 0 −48.17 1

1563 0 −1845 0



x1
x2
x3
x4

+


0 0

0.0004 6.571

0 −46.94

0.003525 −1563


[
U

W

]

Y =
[
0 0 1 0

]
x1
x2
x3
x4

+
[
0 0

] [U
W

]

(a) (PTS: 0-2) Use state feedback setup to compute the continuous time infinite-horizon LQR
controller gain K with Q and R specified below. What is the gain matrix and the norm of



the close-loop transfer function?

Q =


103 0 0 0

0 105 0 0

0 0 3 · 104 0

0 0 0 106

 , R =
[
1
]

(b) (PTS: 0-2) Use state feedback setup to compute the H2 and H∞ controller replicating the
result of LQR controller in Part (a). What are the gain matrix and the norm of the close-loop
transfer function?

(c) (PTS: 0-2) Use state feedback setup to compute the H2 and H∞ controllers minimize x3 and
u with weighting W = 105 on x3. What are the gain matrix and the norm of the close-loop
transfer function?

(d) (PTS: 0-2) Compare the transfer function response (Bode) of LQR, H2, and H∞ from
disturbance to x3. 5 Bode plots.

(e) (PTS: 0-2) Simulate the closed loop system of LQR, H2, and H∞ for 10s with a 0.1-m step
disturbance input starting at 1s with zero initial condition and plot x3. 5 simulations.

(f) (PTS: 0-2) Use output feedback setup to compute the continuous time infinite-horizon LQR
controller gain K with Q and R specified in Part (a). What is the gain matrix and the norm
of the close-loop transfer function?

(g) (PTS: 0-2) Use output feedback setup to compute the H2 and H∞ controller replicating
the result of LQR controller in Part (a). What are the gain matrix and the norm of the
close-loop transfer function?

(h) (PTS: 0-2) Use output feedback setup to compute the H2 and H∞ controllers minimize
x3 and u with weighting W = 105 on x3. What are the gain matrix and the norm of the
close-loop transfer function?

(i) (PTS: 0-2) Compare the transfer function response (Bode) of LQR, H2, and H∞ from
disturbance to x3. 5 Bode plots.

(j) (PTS: 0-2) Simulate the closed loop system of LQR, H2, and H∞ for 10s with a 0.1-m step
disturbance input starting at 1s with zero initial condition and plot x3. 5 simulations.


