Homework 3 Questions:
Question 1díe: $\quad f: \mathbb{R}^{n} \rightarrow \mathbb{R} \quad \frac{\partial}{\partial x_{j}}\left(\frac{\partial f}{\partial x_{i}}\right)=\frac{\partial}{\partial x_{i}}\left(\frac{\partial f}{\partial x_{j}}\right)$
e)

$$
\left.\begin{array}{rl}
\frac{\partial^{2} f}{\partial x^{2}}=\frac{\partial}{\partial x} \frac{\partial f}{\partial x}= & \frac{\partial}{\partial x}\left(\left(\frac{\partial f}{\partial x_{1}} \cdots \frac{\partial f}{\partial x_{n}}\right) \quad\right. \text { geneal. } \\
= & {\left[\begin{array}{lc}
\frac{\partial f}{\partial x \partial x_{1}} & \frac{\partial}{\partial x_{1}} \frac{\partial f}{\partial x_{n}} \\
i \\
& \frac{\partial}{\partial x_{n}} \frac{\partial f}{\partial x_{1}}
\end{array} \cdots \frac{\partial}{\partial x_{1}} \frac{\partial f}{\partial x_{n}}\right.}
\end{array}\right]
$$

d) A is not sym.
not true that $\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} \neq A_{i j}$
is equal to $\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}=\frac{1}{2}\left(A_{i j}+A_{j i}\right)$
Homework 2 questions:
uniqueness of eigenvectors...

$$
\begin{aligned}
& A=P D P^{-1}=\left[v_{1} \cdots v_{n}\right]\left[\begin{array}{ccc}
\lambda_{1} & & \\
& \ddots & \\
& & \lambda_{n}
\end{array}\right]\left[V_{1} \cdots v_{w}\right]^{-1} \\
& \begin{array}{ll}
\underline{\underline{E}} \in \mathbb{C}^{n \times n} & \underline{E}^{-1} \in \mathbb{C}^{n \times n} \\
\text { (diagonal) } & (\text { diagonal })
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& P E=\left[r_{1} v e^{i \phi} \ldots\right] . . \begin{array}{c}
E^{-1} P^{-1}=(P E)^{-1} \\
r_{1} e^{i \phi} \ldots
\end{array} \\
& E=\left[\begin{array}{ll}
e^{i \phi} & \\
& e^{-i \phi}
\end{array}\right] \quad\left[\begin{array}{cc}
c \phi & -s \phi \\
s \phi & c \phi
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{ll}
u & v
\end{array} \left\lvert\, \begin{array}{ll}
c \phi & -s \phi \\
s \phi & -\phi
\end{array}\right.\right]=\left[\begin{array}{ll}
u^{\prime} & v^{\prime}
\end{array}\right] \quad E^{-1}=\left[\begin{array}{cc}
c-\phi & -s(\phi \phi \\
s(-\phi) & c(-\phi)
\end{array}\right]} \\
& u^{\prime}=c \phi u+s \phi v \text { etc. }
\end{aligned}
$$

Pictures:

Condition Maunder:
$y=A x \quad A$ ill conditioned \quad for a particular $x=A^{-1} y$ essentially colstogther y, x is huge

LECTURE NOTES:
clarifications:

1) $\dot{x}=A x+B u \rightarrow \lambda=a+b i$ eval stability $\operatorname{Re}(\lambda)<0$ $x[t+1]=\bar{A} x[t]+\bar{B} u\{t] \quad \bar{\lambda}$ eval \bar{A} stability $|\bar{\lambda}|<1$
look at $\bar{A}=e^{A \Delta t}$ consistent.
$(\bar{A})^{t}$ if $\left|\bar{\lambda}_{i}\right|<1 \quad \forall i \quad \bar{\lambda}_{i}^{t} \rightarrow 0$ if $\left|\bar{\lambda}_{i}\right|<1$
2) if $M=\left[\begin{array}{ll}A & B \\ O & D\end{array}\right]$ evans $(M)=\operatorname{evals}(A) \cup$ equals (D)
execs:

$$
\begin{array}{ll}
\lambda v=A v & M\left[\begin{array}{l}
v \\
0
\end{array}\right]=\left[\begin{array}{ll}
A & B \\
0 & D
\end{array}\right]\left[\begin{array}{l}
v \\
0
\end{array}\right]=\lambda\left[\begin{array}{l}
v \\
0
\end{array}\right] \\
\mu \omega=D \omega & M\left[\begin{array}{l}
x \\
\omega
\end{array}\right]=\left[\begin{array}{ll}
A & B \\
O & D
\end{array}\right]\left[\begin{array}{l}
x \\
w
\end{array}\right]=\mu\left[\begin{array}{l}
x \\
\omega
\end{array}\right] \\
& \\
& \mu x=A x+B \omega \Rightarrow x=(\mu 工-A)^{\prime} \cdot B_{w}
\end{array}
$$

subtities if μ is also evil of A
Interpretations of Controllability general picture.
Not controllable if "input directions"

$$
\begin{aligned}
& A=P D P^{-1} \\
& {\left[A^{n-1} B \cdots A B B\right]=P\left[D^{n-1} P^{-1} B \cdots D P^{-1} B P^{-1} B\right]}
\end{aligned}
$$

condition $\Longrightarrow P^{-1} B=\left|\begin{array}{l}* \\ 0 \\ t\end{array}\right| \rightarrow D^{k} P^{-1} B=\left|\begin{array}{l}+ \\ 0 \\ i\end{array}\right|$

$$
=P_{\substack{i l l}}\left[\begin{array}{ccc}
-n \\
\text { entry } \\
00 & 0 & 0
\end{array}\right] n \Rightarrow n \Rightarrow \begin{aligned}
& \text { one the columns } \\
& \text { never shows up }
\end{aligned}
$$

$$
e_{i}^{\top} P^{-1} P\left[\begin{array}{ccc}
0 & - & - \\
0 & 0 & 0 \\
0
\end{array}\right]=\left[\begin{array}{lll}
0 & \ldots & 0
\end{array}\right]
$$

\Rightarrow controllability matrix has a left nullspace
\Rightarrow not full row rank.
Transform Cords an dynamics

$$
\dot{x}=A x+B u \quad \text { prog in } x=T z \Rightarrow \dot{z}=T^{-1} A T z+T^{-1} B u
$$

in Z cards $\left[\left(T^{-1} A T\right)^{n-1-1} B \cdots\right]$

$$
\begin{aligned}
& {\left[T^{-1} A^{n-1} B \cdots \cdots T^{-1} A^{-1} B\right]} \\
& T^{-1}\left[\begin{array}{lll}
A^{n-1} B & \cdots & A B
\end{array}\right]
\end{aligned}
$$

Not observable..
$C \rightarrow$ to à right eigenvector "output direction"

Not controllable is not enough inputs for repeats eigenvals.
example $\lambda_{1}=\lambda_{2} \quad D=\left[\left.\begin{array}{cc}\lambda_{1} & 0 \\ \lambda_{1} & 0\end{array} \right\rvert\, \quad \bar{B}=\mathbb{R}^{\times 1}\right.$ in the eigen vector cords...

$$
\left[\begin{array}{llll}
D^{n-1} & \bar{B} & \cdots & \bar{D} \\
\bar{B}
\end{array}\right] \quad \bar{B}=\left[\begin{array}{l}
\bar{b}^{x} \\
x \\
x \\
t
\end{array} \mathbb{R}^{2}\right.
$$

if you choose $\omega \in \mathbb{R}^{2}$

$$
\text { st. } \omega^{\top} 10=0
$$

left multiply..
ω^{\top} cant be he to $\left.\left\lvert\, \begin{array}{ccc}\lambda_{1}^{n-1} \lambda_{2}^{1-1}\end{array}\right.\right) \mid \bar{b} \dot{c}_{1}\left(\lambda_{1}^{n-2} \lambda_{2}^{n-2} \mid \bar{b}\right.$ etc.
if $\lambda_{1} \neq \lambda_{2}$
but if $\lambda_{1}=\lambda_{2}$ ohm
FEEDBACK CONROL ¿̀ OBSERVER DESTGN:

$$
\dot{x}=A x+B u \text { wont } u=\bar{u}+K x \Rightarrow \dot{x}=(A+B K) x+B \bar{u}
$$

Block Diagram:
 stable want to shape evals of ($A+B K$)

What it no access to x ?
measurement $y=C x$ where C is not invertible

1. Mabel state: \hat{X}
2. Use y as input: :
to the model dynamics
to dive \hat{x} to x
3. Use control $u=\bar{u}+k \hat{x}$

Actual state

$$
\dot{x}=A x+B u
$$

$$
\begin{aligned}
& =A x+B k \hat{x}+B \bar{u} \\
& u=C x
\end{aligned}
$$

MODEL STATTE exp meas:
$\dot{\hat{x}}=A \hat{x}+B u+L \hat{y}$,

$$
\text { ERROR DYNANCS } e=\hat{x}-x
$$

$$
\dot{\hat{x}}=A \hat{x}+B u+L(\hat{y}-y)^{\prime}
$$

$$
\dot{e}=\dot{\hat{x}}-\dot{x}=A(\hat{x}-x)+L\left(\hat{x}-x_{x}\right)
$$

$$
=A \hat{x}+B u+L(\hat{d}-C x) \quad \dot{e}=(A+L C) e .
$$

$\hat{y}=C \hat{x}$

Real
system हो

Model system design variables inside computer

Full Dynamics: (interns of $x \dot{\varepsilon}_{1}^{\prime} e$)

$$
\left[\begin{array}{l}
\dot{x} \\
\dot{e}
\end{array}\right]=\underbrace{\substack{A+B K \\
0 \\
0 \\
A K C C}}_{\text {evals of }}\left[\begin{array}{l}
x \\
e
\end{array}\right]+\left[\begin{array}{l}
B \\
0
\end{array}\right] \bar{u}
$$

evils of evals of A $+B K$ matrix just depend on \& evals of $A+L C$
\Rightarrow design K to stabilize $A+B K$ is design L to stabilize $A+L C$ separately
\Rightarrow separation principle mathenvetically the same $A+B K, A^{\top}+C^{\top} L^{\top}$ How to pick $K \dot{\varepsilon}$.
simplest case where $B \in \mathbb{R}^{n \times 1}\left(c \in \mathbb{R}^{1 \times n}\right)$ \Rightarrow choose the evils of the closed loop system. pieing evils \rightarrow choosing cacelop characteristic polyravial mount $\operatorname{def}^{2}\left(\lambda I-A-\beta_{k}\right)=\prod_{i}^{\left(\lambda-\lambda_{i}\right)=\lambda^{n}+\beta_{m i} i^{n-1}+\cdots+\beta_{1} \lambda \beta_{0}}$ design choice $\begin{aligned} & t \text { camenae } \\ & \text { compute }\end{aligned}$
Assume (1) $\operatorname{det}(\lambda I-A)=\lambda^{n}+\alpha_{n-1} \lambda^{n-1}+\cdots+\alpha_{1} \lambda+\alpha_{0}$
pick k to change cher poly from \quad given (1) to (2)

Consider system of form $\dot{z}=\bar{A} z+\bar{B} u$ where $\bar{A}=\left[\begin{array}{ccccc}-\alpha_{n-1}-\alpha_{n-2} & \cdots-\alpha_{1}-\alpha_{0} \\ 1 & 1 & & 0 \\ 0 & 1 & \cdots & 1 & 0 \\ 0 & & 1 & 1\end{array}\right]$

$$
\operatorname{det}(\lambda I-\bar{A})=\lambda^{n}+\alpha_{n-1} \lambda^{n-1}+\cdots+\alpha_{1} \lambda+\alpha_{0}
$$

if we choose $\bar{k}=\left[\begin{array}{llll}\alpha_{n-1}-\beta_{n-1} & \cdots & \alpha_{0}-\beta_{0}\end{array}\right]$
use this gain \rightarrow closed loop cher poly is
Question:
cam we find a similarity transform that coverts our onginal system to this form

Answer: yes if the as we want

$$
\dot{x}=A x+B u
$$

wart T invertible st. $x=T z$ system is

$$
T^{-1} A T=\bar{A}: T^{-1} B=\bar{B}
$$

controllable
Nate: $\left[\bar{A}^{n-1} \bar{B} \cdots \bar{A} \bar{B} \bar{B}\right]$ is always invertible if T exists... then we have

$$
\left[\frac{\left[A^{n-1} \bar{B} \cdots \bar{A} \bar{B} \bar{B}\right]}{\bar{M}}=\frac{T^{-1}}{\left[A^{n-1} B A B B\right]} \frac{M}{\text { is cor }}\right.
$$

if M is invertible \leftarrow she system is controllable then $\cdots T^{-1}=\bar{M} M^{-1} \leftarrow \begin{array}{r}\text { similarity } \\ \text { transform }\end{array}$
Feedback: $K x=K T z=\bar{K} z$

$$
\Rightarrow K=\bar{K} T^{-1}=\bar{K} \bar{M} M^{-1}
$$

- pole placement using controllable
- another version of
this is Ackermamin's Formula
what if $B \in \mathbb{R}^{n \times M}$?
- multiple choices for k that give the desired eigewals \rightarrow freedom to choose eigenvectors
- place command works multi input pick eigenvalues. system's.
\rightarrow chases eigenvectors to
minimize the condition \# of X where the cols of X are the eigenvector of $A+B K$

$$
\begin{aligned}
X^{\top} X & =\left[\begin{array}{lll}
-x_{n}^{\top}- \\
-x_{n}^{\top}-
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
x_{1} & \cdots \\
1 & x_{n}
\end{array}\right] \\
& \left.=\left[\begin{array}{ccc}
x_{1}^{\top} x_{1} & \cdots & x_{1}^{\top} x_{n} \\
x_{n}^{\top} x_{1} & \cdots & x_{n}^{\top} x_{n}
\end{array}\right]\right\} \begin{array}{l}
\text { defines } \\
\text { the shape } \\
\text { of } X
\end{array}
\end{aligned}
$$

Polar Decomposition: if X is square invertible...
like a rotation like complex \#S $\quad z=r e^{i \phi}$ have detemnaut of 1

Condition \#
Singular Value Decomposition
For any $X \in \mathbb{C}^{n \times M}$

$$
\bar{\Sigma}=\left[\begin{array}{cc}
\sigma_{1} & 0 \\
0 & \sigma_{k}
\end{array}\right]
$$

σ_{i} : non zero evils of

$$
\begin{aligned}
& \text { or aquereots of the evils } \\
& \text { square of } X^{\top} X \text { ह } X X^{\top}
\end{aligned}
$$

$$
\begin{aligned}
& X=U_{G \mathbb{C}^{N \times n}} \underbrace{V^{*}}_{\epsilon \mathbb{C}^{m \times m}}
\end{aligned}
$$

$$
\begin{aligned}
& \bar{\varepsilon} \text { : diagonal } \dot{\xi} \text { positive }
\end{aligned}
$$

SVD: works on matrix of any dimension

$$
\begin{aligned}
& X=\left[U_{1} \mid U_{2}\right]\left[\begin{array}{c|c}
\bar{\Sigma} & 0 \\
\hline 0 & 0
\end{array}\right]\left[\begin{array}{c}
v_{1}^{*} \\
\hline v_{2}^{2}
\end{array}\right] \Rightarrow U_{1} \text { : orthonormal } \begin{array}{l}
\text { basis for } R
\end{array} \\
& \text { basis for } R(x) \\
& U_{2} \text { : othonomal } \\
& \text { basis for } N\left(X^{*}\right) \\
& V_{1} \text { : orthonamal } \\
& \text { basis for } R\left(X^{*}\right) \\
& V_{2} \text { : orthonomed } \\
& \begin{array}{l}
\text { 2: orthonomed } \\
\text { basis for } N(x)
\end{array} \\
& X^{-1}=\left(u \varepsilon v^{A}\right)^{-1}=v \varepsilon^{-1} u^{*} \\
& \sum^{-1}=\left[\bar{\sum}\right]=\left[\begin{array}{lll}
\frac{1}{\sigma_{1}} & \\
& \ddots & 1
\end{array}\right] \begin{array}{lll}
\text { if } & \sigma_{\text {max }} & \gg \sigma_{\text {min }}
\end{array} \\
& \text { if } X \text { is invertible: } \\
& \text { Condition \# } \frac{\sigma_{\max }(x)}{\sigma_{\min }(x)} \\
& \text { if } X \text { is invertible: }
\end{aligned}
$$

closed loop matrix
$A+B K=X D X^{-1}$ if X is poorly conditioned
$=$ relatively close to O
$(A+B K) x(0)=X D \bar{X}^{-1} x(0)<$ singular value then
pick D to ${ }^{\swarrow}$ could $\begin{aligned} & \text { be huge } \\ & \text { have evals } X^{-1} \text { gets huge in certain }\end{aligned}$ you wort dependiry on directions the amplitude $X(0)$ of $X^{-1} x^{(0)}$ placer command could be big is X is poorly conditioned.
for multi input
"Robust Pole Assignment in Linear State
Fed back (1985) systems chooses X to be aswell conditioned keausky, Nidols Van Doorn. as possible.

Linear time varying systems eq linearization

CONTINUOUS THE

$$
\dot{x}(t)=A(t) x(t)+B(t) u(t)
$$

Stale transition : $e^{A\left(t-t_{0}\right)} \rightarrow \phi\left(t, t_{0}\right)$
solution to $\dot{\phi}\left(t_{0}\right)=A(t) \phi\left(t, t_{0}\right)$ with ic. $\phi\left(t_{0}, t_{0}\right)=I$

- $\phi\left(t, t_{0}\right)=I$
- $\phi(t, t)=\phi^{-1}\left(t, t_{0}\right) \quad \phi(t, t):$ map between
- $\phi\left(t, t_{0}\right)=\phi\left(t, t_{1}^{\prime}\right) \phi\left(t_{1}^{\prime}, t_{0}\right)$
- $\dot{\phi}\left(t, t_{0}\right)=A(t) \phi\left(t, t_{0}\right)$

$$
\begin{aligned}
& x(t)=\phi(t, 0) x(0) \underset{\substack{\text { In } \\
\text { con } \\
\text { con }}}{ }
\end{aligned}
$$

General foo for compathy
this is Peano-Baker
series \rightarrow nested integrals
ugh
linearization of Nonlin. din

$$
\dot{x}=f(x, u, t)
$$

nominal control trajectory: $\bar{u}(t)$
play into dy nomics:
to get nominal state: $\bar{x}(t)$
trajectory
solution to integrating the dynamics
will apply control $u=\underline{\bar{u}}+\underset{\text { addition to }}{\Delta u}=\bar{u}+k \Delta x$
addition to
control to stabilize armand trajectory

$$
\begin{aligned}
& x(t)=\bar{x}(t)+\Delta x(t) \\
& \text { perturbations } \\
& \text { to the state } \\
& \dot{x}=\dot{\bar{x}}+\dot{\Delta x}=f(\bar{x}+\Delta x, \bar{u}+\Delta u, t) \\
& \dot{\bar{x}}+\Delta \dot{x}=f(\bar{x}, \tilde{\pi}, \underline{t})+\left.\frac{\partial f}{\partial x}\right|_{\bar{x} \bar{u} t} \Delta x+\left.\frac{\partial f}{\partial u}^{x}\right|_{\bar{x}, \bar{t}, t} \\
& \Delta \dot{x}=\left.\left.\frac{\partial f}{\partial x}\right|_{\bar{x} \frac{\tilde{u}}{u}, t}\right|_{x}+\frac{\partial f}{\partial u}\left|\Delta u \Rightarrow \Delta x[t+1]=\Delta x[t]+\Delta t \frac{\partial f}{\partial x}\right|_{\bar{x} \bar{u}, t} \Delta x[t] \\
& \text { LIN ThE VARYING PERTURBATiON } \\
& \text { DyNAMICS } \\
& \text { INTHE LTICASE: } \\
& \underset{\substack{\text { EULER } \\
\text { ENE GoRTON. }}}{\text { FOUnD }}+\left.\Delta t \frac{\partial f}{\partial u}\right|_{\bar{x}, \bar{u}, t} ^{\Delta u[t]} \\
& \text { first teas in }
\end{aligned}
$$

 the Taylor exp of the state trans matrix.

LYapuNOV STABILITY THEORY:
IDDEA: define am"energy"function for a system Ether show that it decreases along trajectories of she system \rightarrow way to show stability.
used in linear systems: ' \& nonlinear systems \rightarrow related to linear quadratic regulator (LQR)
the cost-to-gs in the LQR problem acts lite a Lyapun or function
LEMMA: Sunction $F(t)$ st.

$$
\begin{aligned}
& \text { unction } F(t) \text { st. } \\
& \dot{F}(t) \leq \lambda F(t) \Rightarrow F(t) \leq e^{\lambda t} F(0)
\end{aligned}
$$

Proof: define $u(t)=e^{-\lambda t} F(t)$
take

$$
\begin{aligned}
\dot{u}(t) & \leq 0 \\
u(t) & =e^{-\lambda t} F(t) \leq u(0) \\
\Rightarrow e^{-\lambda t} F(t) & \leq F(0) \Rightarrow F(t) \leq e^{\lambda t} F(0)
\end{aligned}
$$

if we know the derivative of a scalar function is always bounded by some scalar times the function value \rightarrow then we can use phat sautar value λ as decay rate that bounds the function
\rightarrow useful when $\lambda<0$ because $e^{\lambda t} \rightarrow 0 \Rightarrow F(t) \rightarrow 0$
$F(t)$: energy type function

Apply to linear systems:
Consider function $F(x(t))=x(t) P^{\top} P_{x}(t)$ whee $P=P^{\top}>0$ is symmetric B and x evolves according to $\dot{x}=A x$

$$
\begin{aligned}
& \bar{F}=\frac{\partial F}{\partial x} \dot{x}=x^{\top} P \dot{x}+\dot{x}^{\top} P x \\
& \text { "lie denerathe: }=x^{\top} P A x+x^{\prime} A P x=x^{\top}\left(A^{\top} P+P A\right) x
\end{aligned}
$$

Note: for a matrix $Q=Q^{\top}>0$

$$
\lambda_{\min }(Q)|x|^{2} \leq x^{\top} Q x \leq \lambda_{\max }(Q)|x|^{2}
$$

suppose $A^{\top} P+P A=-Q$ for some $Q=Q^{\top}>0$

$$
\begin{gathered}
\text { pose } A^{\top} P+P A=-Q \text { for some } Q=Q^{\top}>0 \\
\dot{F}(x(E))=-x^{\top} Q x \leq \Theta \lambda_{\text {min }}(Q)|x|^{2} \leq \Theta \frac{\lambda_{\min }(Q)}{\lambda_{\text {max }}(P)} x^{\top} P x \\
\quad \text { from } \lambda_{\min }(Q)|x|^{\top} \leq x^{\top} Q x \quad x^{\top} P x \leq|x|^{2}
\end{gathered}
$$

Vole: the negative signs

$$
\frac{x^{\top} P x}{\lambda_{\max }^{(P)}} \leq|x|^{2}
$$

$$
\begin{aligned}
& \text { Sole: the negative signs } \\
& \dot{F}(x(t)) \leq \underbrace{-\frac{\lambda_{\min }(Q)}{\lambda_{\max }(P)}}_{<0} F(t) \Rightarrow F(t) \leq e^{-\frac{\lambda_{\min }(Q)}{\lambda_{\max (P)}} t} F(0)
\end{aligned}
$$

Note: $F(x(t))=x^{\top} P x>0$ for $x \neq 0$

$$
F(0)=0
$$

$\operatorname{since} \frac{-\lambda_{\min }(Q)}{\lambda_{\max }(p)}<0 \Rightarrow e^{-\frac{\lambda_{\min }(Q)}{\lambda_{\max }(\rho)} t} \mathrm{~F}(0) \rightarrow 0 \Rightarrow F(x(t)) \rightarrow 0$
since $F=0$ only at $x(t)=0 \rightarrow x(t) \rightarrow 0$

Picture

if we show \dot{X} always makes $F(x)$ decrease then we can use this to show stability.

