Mechanical Systems & RLC Circuits

Dynamical Systems

Major sources:

Major references:

Winter 2022 - Dan Calderone

RLC Circuits

FIRST ORDER SYSTEMS

(1st order

derivatives)

RC Circuits Capacitor state:

charge or

voltage

 $V_C = CQ_C$

(proportional)

RL Circuits

Inductor state:

current

 I_L

Diagrams

$$\dot{Q} = -\frac{C}{R}Q + \frac{1}{R}V_{\rm in}$$

Dynamics

$$\dot{I} = -\frac{R}{L}I + \frac{1}{L}V_{\rm in}$$

Mechanical Analogs

Compression spring (no mass, stores energy)

Flywheel with angular momentum (no position, only angular velocity)

SECOND ORDER SYSTEMS

(2nd order derivatives)

RLC Circuits

... one state per object with dynamics

States:

Capacitor state: charge or voltage

...analogous to position

(proportional)

Inductor state: current

...analogous to velocity

Graph Relations: Dynamics:

KVL:

sum of voltage

 $V_C = CQ_C$

Elements:

around a loop = 0

 $V_R = RI_R$

 $\dot{Q}_C = I_C$ $L\dot{I}_L = V_L$

KCL

sum of currents into a node = 0

 $V_L = L\dot{I}_L$

RLC Circuits

FIRST ORDER SYSTEMS

(1st order derivatives)

RC Circuits Capacitor state:

charge or

voltage

$$V_C = CQ_C$$

(proportional)

RL Circuits

Inductor state:

current

 I_L

Diagrams

$$\dot{Q} = -\frac{C}{2}Q + \frac{1}{2}V_{\rm in}$$

Dynamics

$$\dot{I} = -\frac{R}{L}I + \frac{1}{L}V_{\rm in}$$

Mechanical Analogs

Compression spring (no mass, stores energy)

Flywheel with angular momentum (no position, only angular velocity)

SECOND ORDER SYSTEMS

(2nd order derivatives)

RLC Circuits

... one state per object with dynamics

States:

Capacitor state: charge or voltage

...analogous to position

(proportional)

Inductor state: current

...analogous to velocity

Elements:

Graph Relations: Dynamics:

 $Q_C = I_C$

KVL:

sum of voltage around a loop = 0

 $V_C = CQ_C$

 $V_R = RI_R$

 $L\dot{I}_L = V_L$

KCL

sum of currents

 $V_L = L\dot{I}_L$ into a node = 0

States:

 Q_{C_1} Charge on capacitor 1 Current thru inductor 1

Current thru inductor 2

KVL/KCL Equations:

 $V_{\text{in}} = V_{L_1} + V_{R_1}$ $V_{R_1} = V_{C_1} = V_{L_2}$

KCL: $I_{L_1} = I_{R_1} + I_{C_1} + I_{L_2}$

Derived in terms of states...

$$V_{C_1} = V_{R_1} = V_{L_2} = C_1 Q_{C_1}$$

$$V_{L_1} = V_{\rm in} - C_1 Q_{C_1}$$

$$I_{R_1} = \frac{C_1}{R_1} Q_{C_1}$$

$$I_{C_1} = I_{L_1} - I_{L_2} - \frac{C_1}{R_1} Q_{C_1}$$

Dynamics:

$$\dot{Q}_{C_1} = I_{C_1} = I_{L_1} - I_{L_2} - \frac{C_1}{R_1} Q_{C_1}$$

$$L_1 \dot{I}_{L_1} = V_{L_1} = V_{\text{in}} - C_1 Q_{C_1}$$

$$L_2 \dot{I}_{L_2} = V_{L_2} = C_1 Q_{C_1}$$