Topical Index
Topical-Index, Alphabetic-Index,
Collected- Linear Algebra: linalg(lec),
- Block-matrix multiplication: block(slides), block(web),
- Complex Numbers: complex(lec),
- Derivatives: derivs(lec), derivs(web),
- Linearization: lin(slides),
- Product Rule: calc(slides),
- Integration by Parts: calc(slides),
- Leibniz Integral Rule: calc(slides),
- Vectors/Vector sets: vecs(mono), vecs(web), vecsets(web), vecadd(web),
- Subspace:
- Linear combinations: combs(lec), lincombs(web),
- Span: span(lec),
- Positive combinations: combs(lec),
- Convex combinations: combs(lec), cvxcombs(web),
- Norms: matprod(lec), norms(web),
- Inner products: matprod(lec), inner(lec), inner(web), outer(web),
- Linear transformations: lintrans(web),
- Column geometry: cols(mono), colrow(slides), cols(slides), fundthm(slides), colrows(web),
- Row geometry: colrow(slides),
- Transposes: transpose(web),
- Matrix Addition: matadd(slides), matadd(web),
- Matrix Multiplication: matmult(slides), matmult(web),
- Matrix Norms: matnorms(web),
- 2x2 Matrices: 2x2(mono),
- Bases: bases(web),
- Coordinates: coords(lec), coords(web),
- Orthogonality:
- Orthonormal transformations: ortho(web),
- Orthonormalization: orthonormal(web),
- Rotations: rotations(lec), rotations(slides),
- Inverses: invs(lec), invs(web), inv(ref),
- Similarity Transforms: sim(web),
- Congruent Transforms: cong(web),
- Projections: projs(lec), projs(web),
- Range space: range(web),
- Nullspace: nullspace(web),
- Matrix Rank/Rank-Nullity: ranknull(web),
- Fundamental Thm (linear algebra):
- System of Eqns:
- Pseudo-inverses: pinvs(web),
- Left-Right Inverses: lrinvs(web),
- Gaussian Elimination: gausselim(web),
- Elementary matrices: gerows(slides), gecols(slides),
- Diagonalization: eig(slides),
- Eigenvalues/Eigenvectors: eig(slides),
- Characteristic polynomial: eig(slides),
- Spectral mapping theorem: eig(slides),
- Polar decomposition: decomps(lec), svd(slides),
- Singular Value Decomposition: decomps(lec), svd(slides),
- Discrete Fourier Transforms: dft(slides),
- Kinematics: kinematics(slides),
- Mechanics: dynamics(slides),
- Circuits: circuits(slides),
- Ordinary Differential Eqns (ODEs): odes(lec),
- Linear systems: ltisys(slides),
- Controllability: ltisys(slides), ctrlobs(slides),
- Observability: ltisys(slides), ctrlobs(slides),
- Controls:
- Disturbance Rejection: disturbs(slides),
- MIMO control:
- Uncertainty modeling: lfruncertainty(slides),
- Estimation: kfs,
- Kalman filters: kfvis(slides), kf(ref), kfexamples(ipynb),
- Graph theory:
- Algebraic graph theory: graphflows(mono), graph(slides), treescycles(blog),
- Laplacians: graph(slides),
- Adjacency Matrices: graph(slides),
- Incidence matrices: graph(slides), treescycles(blog),
- Markov decision processes: mdps(mono), mdps(slides),
- High dimensional inner products: highdim(slides),
- Regression: regress(slides),
- Classification: classify(slides),
- Algorithms: algos(slides),
- Arrays: arrays(slides),
- Python: python(slides),
- Drawing: drawing(slides),
- Affine spaces: affine(slides),
- Polytopes: polytope(mono),
- Pos & Neg (semi-)definite: posdef(slides), svd(slides),
- Quadratic forms: posdef(slides),
- Congruent Transforms: cong(web),
- Duality: duals(slides),
- Linear programs (LPs): duals(slides),
- Quadratic programs (QPs): duals(slides),
- Second order cone programs (SOCPs): duals(slides),
- Semi-definite programs (SDPs): duals(slides),
- KKT Conditions kktmat(slides),
- KKT Sensitivity kktsens(slides),
- Simplex Method simplex(ipynb), simplex(ex), simplex(blog), simplexroute(blog),
- Bipartite Matching bipartite(slides),
- Successive Convexification (Trajectory Planning): scvx(blog),